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SECTION I

INTRODUCTION

Advanced Micro Devices has designed an educational tool, the
Am2900 Evaluation and Learning Kit, to be used by the design
engineer learning microprogramming. The purpose of this kit
is twofold. First, it is intended to introduce the design
engineer to several of the circuits in the Am2900 Bipolar Micro-
processor Family. Second, it is intended to be an instructional
tocl for the engineer faced with his first microprogramming job.
The kit consists of one Am2901 Bipolar Microprocessor, one Am2909
Bipolar Microprogram Sequencer, and several memories, registers,
and multiplexers organized in a typical CPU (Central Processing
Unit) structure. It should be said at the onset that the pur-
pose of this kit is to introduce the design engineer to the
Am2900 Family devices and provide a microprogram learning tool.
This kit is NOT a four-bit computer.

The organization of the kit is a reduced example of a
typical CPU design. In the microprogram control area, one
Am2909 Bipolar Microprogram Sequencer is used to address 16 words
of microprogrammed memory. The kit uses eight Am27503 64-bit
RAM's (Random Access Memories) connected as the microprogram
memory. This provides a total microprogram memory that is 16 words
deep where each word is 32 bits wide. This memory is used as the
writeable microprogram memory for holding the microinstructions
of the program. The kit contains eight Am2918 Registers used as
a 32~bit wide pipeline register at the output of the microprogram
memory. The kit also has a 32-word by 8-bit PROM (Programmable
Read Only Memory) in the Am2909 control path to generate next
microprogram address commands.

one four-bit Am2901 Bipolar Microprocessor slice. One Am25LS08
is used as the status register which holds the four status flags.
The ALU section also uses two Am25L5253 Multiplexers for shifting
data into either the RAM shift matrix or the Q shift matrix under
microprogrammed control. This allows the execution of various
types of microinstructions and the results of these operations
can be learned in concept and in practice.
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The ALU (Arithmetic Logic Unit) in the Am2900 kit utilizes '

The microprogram memory is loaded with data by using a
combination of toggle switches that select the memory to be loaded,
apply the address for the memory, and also apply the data to be
lcaded into the memory. The contents of the microprogram memory
can be viewed conveniently, four bits at a time, on four LED
(Light Emitting Diode) lamps. Four-bit fields associated with




the Am2901, Am2907, Am2909, and Am25LS08 can be viewed on four
additional LED lamps. Likewise, four-bit fields of the Am2918
Pipeline Register can be viewed on a separate LED display. This
provides the student with the ability to learn the machine opera-
tion in a step-by-step program sequence.

All components required in the assembly of the Am2900 Evaluation
and Learning Kit are supplied in the kit package. The only item
that need be supplied by the user of the kit is a +5V power supply
capable of delivering approximately 2 amperes of current. The
assembly diagram and assembly instructions in this book show the
location of each of the components on the printed circuit board.
Each component should be assembled in its position and then
soldered in place. The user should assemble the board in steps
and check out the assembly as it proceeds. The recommended
technique will be to load some of the components onto the printed
circuit (PC) board and solder them in place. A +5V power supply
will be connected to the PC board and a test procedure followed
to ensure proper operation of the devices as installed. This
procedure is defined in detail in Section IV during kit assembly.

In order to utilize the Am2900 Family efficiently, a basic
understanding of microprogramming is essential. The simplest
method of microprogramming is for each microinstruction step to
be implemented in a sequential manner. The EXECUTION of the
microprogram allows the CPU to operate on a microinstruction in
a particular memory location. Then, the microprogram controller
increments to the next memory location for the next microinstruction.
After each microinstruction fetch, the pipeline register will con=-
tain the memory location contents for execution. In order to provide
the basic understanding of microprogramming, Section II on this
topic is included in this book. Section III describes the basic
operation of the Am2900 Evaluation and Learning Kit applying the
basics from Section II.




SECTION II

UNDERSTANDING THE BASIC THEORY OF MICROPROGRAMMING

INTRODUCTION

With the advent of the Am2901 four-bit microprocessor slice
and the Am2909 bipolar microprogram sequencer, the design engineer
can upgrade the performance of existing systems or implement new
systems taking advantage of the latest state-of-the-art technology
in Low-Power Schottky integrated circuits. These devices, however,
utilize a new concept in machine design not familiar to many
design engineers. This technique is called microprogramming.

Basically, a microprogrammed machine is one in which a
coherent sequence of microinstructions is used to execute various
commands reguired by the machine. If the machine is a computer,
each sequence of microinstructions can be made to execute a macro-
instruction. All of the little elemental tasks performed by the
machine in executing the macroinstruction are called microinstruc-
tions. The storage area for these microinstructions or micro-
program signals is usually called the microprogram memory.

A microinstruction usually has two primary parts. These
are: (1) the definition and control of all micro-operations to
be carried out and (2) the definition and control of the address
of the next microinstruction to be executed.

The definition of the various micro-operations to be carried
out usually includes such things as ALU source operand selection,
ALU function, ALU destination, carry control, shift control,
interrupt control, data-in and data-out control, and so forth.
The definition of the next microinstruction function usually
includes identifying the source selection of the next micro-
instruction address and, in some cases, supplying the actual
value of that microinstruction address.

Microprogrammed machines are usually distinguished from non-
microprogrammed machines in the following manner. Older,
non-microprogrammed machines implemented the control function
by using combinations of gates and flip~flops connected in a some-
what random fashion in order to generate the required timing and
control signals for the machine. Microprogrammed machines, on
the other hand, are normally considered highly ordered and more
organized with regard to the control function field. In its
simplest definition, a microprogram control unit consists of the
microprogram memory and the structure required to determine the
address of the next microinstruction.



UNDERSTANDING THE MICROPROGRAM MEMORY

The microprogram memory is simply a N word by M bit memory
used to hold the various microinstructions. Figure 1 depicts the
word number definition of an N word microprogrammed memory. FoOr
an N Word memory, the address locations are usually defined as
location 0 through location N-1. For example, a 256-word micro-
program memory will have address locations 0 through 255.
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FIGURE 1: Organization of an N-word Microprogram Memory

Each word of the microprogram memory consists of M bits.
These M bits are usually broken into various field definitions.
A typical example of field definition is shown in Figure 2 where
a 32-bit word made up of nine fields is depicted. It should be noted
that the fields can consist of various numbers of bits. For
example, field number 1 is 5 bits wide, field number 2 is 8
bits wide, field number 6 is 1 bit wide, and so forth. It is the
definition of the various fields of a microprogram word that is
usually referred to as FORMATTING. Thus, Figure 2 shows the
format of a 32-bit microinstruction.
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FIGURE 2: Definition of the Fields within one 32-bit
MICROPROGRAM Memory Word

Examples of the uses of the field as defined in Figure 2
are as follows:

Field 1 - General purpose

Field 2 - Branch address

FPield 3 - Next address control

Field 4 - Interrupt control

Field 5 - Fast clock/slow clock select
Field 6 - Carry controcl

Field 7 - ALU source operand control
Field 8 -~ ALU function cocntrol

Field 9 - ALU destination control

The above field definition is an example of how microinstruction
fields are defined in a typical machine.

SEQUENCING THROUGH MICROINSTRUCTIONS

Once the microprogram format has been defined, it is necessary
to execute seguences of these microinstructions if the machine is
to perform any real function. In its simplest form, all that is
required to sequence through a series of microinstructions is a
microprogram address counter. Such a simplified microprogram
memory address control is shown in Figure 3. The microprogram
address counter simply increments by one on each clock cycle to
select the address of the next microinstruction. Figure 4 shows
an example of what might be occurring in this mode. For example,
if the microprogram address counter contains address 23, the
next clock cycle will increment the counter and it will select
address 24. The counter will continue to increment on each clock
cycle thereby selecting address 25, address 26, address 27, and
so forth. 1If this were the only control available, the machine
would not be very flexible but it would be able to execute a
fixed pattern of microcinstructions.
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The technigque of continuing from one microinstruction to
the next segquential microinstruction is usually referred to
as CONTINUE or EXECUTE. Thus, in microprogram control definition,
we will use the CONTINUE or EXECUTE statement to mean simply
incrementing to the next microinstruction.

MICROPROGRAM BRANCHING OR JUMPING

If the microprogram controcl unit is to have the ability to
select other than the next microinstruction, the control unit
must be able to load a BRANCH address. Figure 5 shows a control
unit architecture whereby a BRANCH address can be parallel loaded
into the microprogram address counter. The load control is a
single bit field within the microprogram word format. Let us
call this one-bit field the microprogram address counter load
enable bit. When this bit is at logic 0, a load will be inhibited
and when this bit is logic 1, a load will be enabled. If the load
is enabled, the branch address contained within the microprogram
memory will be parallel loaded into the microprogram address
counter. This results in the ability to perform an N-way branch.
For example, if the branch address field is eight bits wide, a
branch to any address in the memory space from word 0 through word
255 can be performed. Note that there may be many other fields
in the microprogram.

Let us examine the programming that would be required by
the microprogram control unit described in Figure 5. Referring to
the microprogram memcry map of Figure 6, assume the current address
in the microprogram address counter is 51. Since the locad
control is logic 0, the counter will increment on the next clock
cycle and will contain address 52. In fact, the counter will
continue to increment through words 53, 54, 55, 56 and 57. When
the microprogram address counter contains address 57 as shown in
Figure 6, the load control bit changes to a logic 1. When this
happens, the microprogram address counter will parallel load the
branch address supplied to its parallel data inputs. An example
of such a counter is the Am25LS161 binary counter. The branch
address shown in the contents of word 57 in Figure 6 is address
90. On the next clock cycle, 90 will be loaded into the micro-
program address counter. Thus, the next microinstruction executed
will be defined by the contents of the microinstruction word at
address 90. Figure 6 now defines the load control bit at instruc-
tion %0 to be logic 0. Thus, on the next clock cycle, the counter
will increment to address 91. When address 92 is reached,
ancther BRANCH is defined. The branch address at word 92 is
address 13.

The simple branching control feature described in Figure 5
and Figure 6 allows a microprogram memory controller to execute
sequential microinstructions or perform a BRANCH to any address
either before or after the address currently contained in the
microprogram address counter.
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CONDITIONAL BRANCHING

While the BRANCH or JUMP instruction has added some flexi-
bility to the sequencing of microprogram instructions, the
controller still lacks any decision-making capability. This
decision-making capability is provided by the CONDITIONAL BRANCH
instruction. Figure 7 shows a functional block diagram of a
microprogram memory/address controller providing the capability
to branch on two different conditions. 1In this example, the
load select control is a two-bit field used to control a four-
input multiplexer. When the two-bit field is equivalent to binary
zero, the multiplexer selects the zero input which forces the
load control inactive. Thus, the CONTINUE microprogram control
instruction is executed. When the two-bit load select field
contains binary one, the Dj input of the multiplexer is selected.
Now, the load control is a function of the Condition 1 input.

If Condition 1 is logic 0, the microprogram address counter
increments and if Condition 1 is logic 1, the branch address

will be parallel loaded in the next clock cycle. This cperation
is defined as a CONDITIONAL BRANCH. If the load select input
contains binary 2, the Dy input is selected and the same function
is performed with respect to the Condition 2 input. If the load
select field contains binary 3, the D3 input of the multiplexer is
selected. Since the D3 input is tied to logic HIGH, this forces
the microprogram address counter to the load mode independent of
anything else. Thus, the branch address is loaded into the micro-
program address counter on the next clock cycle and an UNCONDITIONAL
JUMP is executed. This load select control function definition is
shown in Table I.

TABLE I

Load Select Control Function

51 SO Function

0 0! Continue

0 1! Jump Condition 1 True

-
<

Jump Condition 2 True

et
—

Jump Unconditional
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A microprogram memory map showing the use of conditional
branching in microprogram control is depicted in Figure 8. 1In
this map, we assume the microprogram address counter is currently
pointing at word 30. The load select field causes the address
counter to increment to word 31 on the next clock cycle. At
word 31, a CONDITIONAL BRANCH is encountered. If the Condition 1
input is logic 0, the next word selected will be word 32. If
the Condition 1 input is logic 1, the next word selected will
be word 38. The example of Figure 8 shows other CONDITIONAL
BRANCHES at word 32, 35, and 36. It also shows an UNCONDITIONAL
BRANCH at word 39. It should be noted that words 35 and 36
result in CONDITIONAL BRANCHES to the same address, address 95.
The essence of this function is that if either Condition 1 or
Condition 2 is true as tested on sequential microinstructions,
the program branches to the sequence beginning at address 95.

An example of the power of CONDITIONAL RBRANCHING is shown
in Figure 9A. Here, ignoring the start-up problem, let us assume
the microprogram address counter contains the word 0. The instruc-
tion being executed is a conditional test on Condition 1 input.
If Condition 1 is true, branch to word 4 and if Condition 1 is
false, continue. Word 1 performs a test on Condition 2. This
test results in a branch to word 8 if true, or a continue if
false. Word 2 performs a condition test on Condition 1. If
true, a branch to word 12 occurs, if false a continue to word 3
occurs. Word 3 is an unconditional branch to the starting address
at word 0. In this example, if a jump occurs to either word
4, 8, or 12, the net result is that the next four instructions
are executed and then an unconditional branch to word 0 occurs.
The flow table for this l6-word microprogram is shown in Pigure 9B.

The microprogram control flow described in Figures 9A and
9B represent a simple state machine design controller that looks
for either Condition 1 to occur, Condition 2 to occur, Oor not
Condition 2 followed by Condition 1 occurring before a reset to

wor@ 0. 1In the event any of the conditions do occur, a small
series of tasks (four microinstructions) are to be executed and
then the machine returned to word 0. If none of the test conditions

occur, the machine is reset at word 3 and returned to the test at
word 0. At power-up, an asynchronous reset could be applied to the
microprogram address counter to initialize the machine. Although
Figure 9A and Figure 9B describe an extremely simple microprogram
control unit, it is representative of the microprogram control
power contained in only three basic microinstructions. These
microinstructions are the CONTINUE instruction, the UNCONDITIONAL
JUMP instruction, and the CONDITIONAL JUMP instruction.
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OVERLAPPING THE MICROPROGRAM INSTRUCTION FETCH

Now that a few basic microprogram address control instructions
have been defined, let us examine the = instructions
used in a microprogram control unit featuring the overlap fetching
of the next microinstruction. This technique is also known as
"pipelining." The block diagram for such a microprogram control
unit is shown in Figure 10. The key difference when compared with
previous microprogrammed architectures is the existence of the
"pipeline register" at the output of the microprogram memory.
By definition, the pipeline register {or microword register)
contains the microinstruction currently being executed by the
machine. Simultaneously, while this microinstruction is being
executed, the address of the next microinstruction is applied to
the microprogram memory and the contents of that memory word are
being fetched and set-up at the inputs to the pipeline register.
This technique of pipelining can be used to improve the performance
of the microprogram control unit. This results because the contents
of the microprogram memory word required for the next cycle are being
fetched on an overlapping basis with the actual execution of the
current microprogram word. It should be realized that when the
pipeline approach is used, the microprogram fetch, the current
microinstruction being executed and the results of the previous
microinstruction are available with respect to each other simul-
taneously. Said another way, the design engineer must be aware
of the fact that some registers contain the results of the pre-
vious microinstruction executed, some registers contain the cur-
rent microinstruction being executed, and some registers contain
data for the next microinstruction to be executed.

Let us now compare the block diagram of Figure 10 with that
shown in Figure 7. The major difference, of course, is the addi-
tion of the pipeline register at the output of the microprogram
control memory. Also, notice the addition of the address multi-
plexer at the source of the microprogram memory address. This
address multiplexer is used to select the microprogram counter
register or the pipeline register as the source of the next
address for the microprogram memory. The condition code multi-
plexer is used to control the address multiplexer in this address
selection. By placing an incrementer at the output of the address
multiplexer, it is possible to always generate the current micro-
programming address "plus one" at the input of the microprogram
counter register. 1In Figure 7, the microprogram address counter
was described as a device such as the Am25LS161 counter. In
the implementation as shown in Figure 10, the Am25LS161 counter
is not appropriate. Instead, an incrementer and register are
used to give the equivalent effect of a counter.
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The key difference between using a true binary counter and
the incrementer register described here is as follows. When
the branch address from the pipeline register 1is selected by
the multiplexer, the incrementer will combinatorially prepare that
address plus one for entry into the microprogram counter register.
This entry will occur on the LOW-to-HIGH transition of the clock.
Thus, the microprogram counter register can always be made to contain
address plus one, independent of the selection of the next micro-
instruction address. When the address mutliplexer 1s switched so
that the microprogram counter register is selected as the source of
the microprogram memory address, the incrementer will again set-—
up address plus one for entry into the microprogram counter register.
Thus, when the address multiplexer selects the microprogram counter
register, the address multiplexer, incrementer and microprogram
counter register appear to operate as a normal binary counter.

The condition code multiplexer SpS; operates in exactly the
same fashicon as described for the condition code multiplexer of
Figure 7. That is, binary zero in the pipeline register (the
current microinstruction being executed) forces an unconditional
selection of the microprogram register via Dy. Binary one or
binary two in the next address select control bits of the pipeline
register cause a conditional selection at the address mutliplexer
via D1 or Dz2. Thus, a CONDITIONAL BRANCH can be executed. Binary
three in the next address select portion of the pipeline register
causes an UNCONDITIONAL BRANCH instruction to be executed via D3.

When the overall machine timing is studied, it will be noticed
that the key difference between overlap fetching and non-overlap
fetching involves the propagation delay of the microprogram
memory. In the non-pipelined architecture, the microprogram memory
propagation delay must be added to the propagation delay of all
the other elements of the machine. In the overlap fetch arch-
itecture, the propagation delay associated with the next micro-
program memory address fetch is a separate loop independent of
the other portion of the machine.

SUBROUTINING IN MICROPROGRAM CONTROL

Thus far, we have examined the CONTINUE instruction as
well as the CONDITIONAL and UNCONDITIONAL BRANCH instructions.
Just as in the programming of minicomputers and microcomputers,
the advantages of SUBROUTINING can be realized in microprogramming.
The idea here, of course, is that the same block of microcode can
be shared by several instruction sequences of microcode. This
results in the overall reduction in the total number of microprogranm
memory words required by the design. If we are to jump to a sub-
routine, what is required is the ability to store an address to
which the subroutine should return when it has completed its
execution. Examining the block diagram of Figure 11, we see the
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addition of a push/pop stack and its associated stack pointer.
The control signals required by the stack are an enable stack
signal which will be used to tell the file whenever we wish to
perform a push or a pop, and a push/pop control used to control
the direction of the stack pointer (push or pop).

In this architecture, the stack pointer always points to the address
of the last microinstruction written into the file. This
allows the "next address multiplexer" to read the file at any time
via port 2 on the next address MUX. When this selection is per-
formed, the last word written on the stack will be the word
applied to the microprogram memory. The condition code multiplexer
of the previous example has alsoc been replaced by a stack and
address control programmable read only memory (PROM). The next
address control field of the microprogram word has been expanded
to a three-bit field. This three-bit field in conjunction with
one condition code bit form the four-bit address control for the
stack and address control PROM. The PROM has four outputs used to
control the next address multiplexer and the stack pointer. The
net result is that in this example, eight instructions have been
defined where three of the instructions are conditional. Table
II shows these next address select control functions. They include
continue, branch, branch on condition, push, jump-to-subroutine,
jump-to-subroutine on condition, return-from-subroutine, and test
end of loop. ©Note that this architecture does not provide the
ability to select any particular starting address. Also , either
a master reset or a known address must be provided to the system
to somehow handle power-up turn-on. A system using the Am2909 can
provide this feature. Table III shows a detailed definition of the
instruction set defined in Table II.

TYPICAL COMPUTER CONTROL UNIT ARCHITECTURE USING THE AM2%09

The microprogram memory control described in Figure 11 is
easily implemented using the Am2909 as shown in the block diagram
of Figure 12. Note the addition of a fourth input (D) for selecting
the starting address of a sequence of microinstructions. The
Am2909 thereby provides four different inputs from which the next
address can be selected. These are the direct input (D), the
register input (R), the program counter (PC), and the file (F).
A detailed logic diagram of the Am2909 is shown for clarity in
Figure 13.

The architecture of Figure 12 shows a macroinstruction register
capable of being loaded with a macroinstruction word from the
data bus. The op code portion of the instruction is decoded in
a mapping PROM to arrive at a starting address for the micro-
instruction sequence required to execute the macroinstruction.
When the microprogram memory address is to be the first micro-
instruction of the macroinstruction sequence, the microsequencer
control PROM selects the multiplexer D input.



Next Address

TABLE II

Select Control Functions

AgAZAI Function
0600 Continue
001 Branch
010 Branch on condition
cii Push
100 Jump to subroutine
101 Jump to subroutine on condition
110 Return from subroutine
111 Test end of loop
TABLE III
PROM Control for Table II Function
Next Address Enable | Push/
Function A3ApAy Ap |MUX  S1Sp Stack Pop
Continue 000 g 0 No X
. 0
Branch 001 7 1 No X
Condi?ional 010 P ? No %
Branch 1 i
Push 011 g 1 Yes Push
Jump to 0 . ve
. 1 S Push
Subroutine 100 1
gggglzlonal 101 0 0 No |x
p to Y Push
Subroutine L L ©s us
Return from 110 G 2 Yes Pop
Subroutine 1
Test end 111 0 2 No X
of loop 1 0 Yes Pop
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The register internal to the Am2909 should be thought of
as the pipeline register. When the current microinstruction
being executed is selecting the next microinstruction address
as a branch function, the branch address will be contained in
the register internal to the Am2909. When sequencing through
continuous instruction in microprogram memory, the program counter
in the Am2909 is used. The 4 x 4 stack in the Am2909 is used
for looping and subroutining in microprogram operations,

If a three-bit field for the next address control is
used for the architecture shown in Figure 12, the recommended
eight functions are shown in Table IV. The eight functions pro-
viding good control for selection of the address of the next micro-
instruction include continue, branch, branch on condition, push,
jump-to-subroutine, starting address, return-from~subroutine,
and test end of loop. The detailed control regquired to implement
these eight functions is shown in Table V. The actual PROM coding
for this example is shown in Table VI. The PROM selected for
this implementation is an 2m29751 32-word by 8-bit Programmable
Read Only Memory.

If more flexibility is required, the architecture shown
in FPigure 12 can be expanded such that a four-bit next address
field format is used to drive the microseguencer control PROM.
This provides the ability to have 16 different control functions for
selecting the address of the next microinstruction. Table VIT
shows an example of these 16 functions providing a comprehensive
set of instructions for microprogram address control. Table VIII
shows the actual PROM coding for this instruction set and
Figure 14 shows a detailed functional connection diagram for
this microsequencer instruction set.

Am2911 MICROPROGRAM SEQUENCER

2911 Microprogram Seguencer is similar in design to
the Aﬁggogmdzvice. Tie gifference between the Am2909 and Ehe Am2911
involves the D inputs, R inputs, and OR inputs. Qn the Am2911,
the OR inputs have been eliminated to save four pins. Also onth
the Am2911, the R inputs and D inputg have been connec?ed together
to save an additional four pins. This allows the 28-pin Am2909

to be packaged in a 20-pin package.

using the Am2911, the normal technique in.a computer
contrgseinit ig to multipléx the output of the mapping PROM ani.
the output of the pipeline register for the branch address; g is
is easily accomplished using three-state control at each of E ezg .
points. The enable signal or the mapping PROM and the branch ac ri
field three-state control can be supplied from the Am29751 Contro
PROM associated with the microprogram seguencer.
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TABLE VI

Am29751 PROM Coding for Table V Example

Address PROM OQutput
Ay A3AoA Ay 03 0y 07 0Og
00000 X 1 0 0
6 00CO0C1 X 1 ¢ 0
00010 X 1 06 1
00011 X 1 0 1
601060 X 1 0 ¢
00101 X 1 0 1
0 011o0 1 0 0 ¢0
00111 1 0 ¢ o
010600 1 0 0 1
01001 1 0 0 1
01010 X 1 1 1
01011 X 1 1 1
01100 0 ¢ 1 ©
01101 6 0 1 0
01110 X 0 1 o0
01111 {0 1 0 ¢
0 = LOW 1 = HIGH

X = Don't care
Notes:
1. Am2909 Connections:
PROM 0 to Sy (Pin 16)
PROM 07 to S7 (Pin 17)
PROM 03 to FE (Pin 25)
PROM 04 to PUP (Pin 26)
2. Ground A4 (Pin 14)

of Am29751




TABLE VII

PROM Control for 16 Next Address Functions

Next Stack Push
Function AzApA{Ag | CC | Address | Enable | Pop Zero | OR
Start 0 D No X H L
Address 0000 1
Continue 0001 g PC No X H L |
Branch 0010 g R No X H L
Jump zero 0011 g X No X L X
Push 0100 i PC Yes Push H L
0
Pop 0101 1 PC Yes Pop H L
JSB 011G i R Yes Push H L
0
RTS 0111 1 F Yes Pop H L
Test end 0 P No X H
cf loop 1000 1 PC Yes Pop H L
Conditional 0 PC
Branch 1001 1 R No X H L
Conditional 0 PC No X
JSB 1oio 1 R Yesg Push H L
Conditional 0 PC No X
RTS 1011 1 F Yes Pop H L
Conditional T1n 0 PC H L
Jump MAX 1100 1 X Ne X B | ®
Jump MAX 1101 2 X No X H H
Conditionall 0 PC No X H
Jump Zero HI10 1 X No X L L
11131 s TOC BE DETERMINED BY USER
!




TABLE VIII

Am29751 PROM Coding for Table VII Examplsa

Address PROM Output
AyA3h2A1Ag 0 04 03 05 03 Og
00000 0 1 X 1 1 1
00001 0 1 ¥ 1 1 1
00010 01 X 1 0 0
00011 01 X 1 0 0
00100 01 X 1 0 1
00101 0 1 X 1 0 1
00110 0 0 X 1 X X
00111 0 0 X 1 X X
01000 01 1 0 0 0
01001 0 1 1 0 0 0
01010 01 0 0 0 O
01011 01 0 0 0 O
01100 01 1 0 0 1
01101 0 1 1 0 0 1
01110 01 0 0 1 0
01111 01 0 0 1 O
10000 0 1 X 1 1 0
10001 0 1 0 0 0 ©
10010 0 1 X 1 0 0
10011 01 X 1 0 1
10100 0 1 X 1 0 0
Am2%09 Connections: 10101 01 1 0 0 1
pROM 0Op to Sy (Pin 16) 10110 01 X 1 0 0
PROM 01 to S1 (Pin 17) 10111 0 1 0 0 1 o0
PROM 02 to FE (Pin 25) 11000 01 X 1 0 0
PROM 0O to PUP (Pin 26) 11001 1 1 x 1 X X
PROM 04 to Zero (Pin 15) 11010 1 1 x 1 X X
prOM 0z to ORg, ORl, ORp, OR3 11011 1 1 X 1 X X
(Pins 12, 10, 8 and 6) 11100 01 X 1 0 0
11101 0 0 X 1 X X
11110 To be determined %
11111 by user :
"0 = Low 1 = HIGH X = Don't care.
2-26
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FORMATTING IN MICROPROGRAM MEMORY

Many engineers designing a microprogrammed machine for the
first time find difficulty in determining an approach to the micro-:
programming problem. At Advanced Micro Devices, we have found the
following approach to be the most useful for engineers attempting
their first microprogramming design job. This approach inveolves
initially assuming only one format for the microprogram word

will be used. That is, the machine architecture should be
determined as required for the performance desired and the total
word width of the microprogram memory temporarily ignored. This
can result in a fairly wide microprogram word at the onset of the
design. However, by taking this approach, the design engineer does
not become immediately bogged down in making several trade-offs
as to the various formats useful for the microprogram words. If
the machine architecture is designed to achieve the performance
required and the microprogram word is expanded such that bits are
available to control the various portions of the machine as
required, then the initial design task becomes straight~forward.

After the initial architecture has been laid out, the design
should proceed such that small groups of microinstructions are
written for the key macroinstructions. Particular emphasis
should be placed on the macroinstruction set reqguiring the highest
use in the firmware operation. For example, particular emphasis
should be placed on the fetch routine since it is used over and
over on every machine instruction cycle. Likewise, if the machine.
will typically execute many register-to-register arithmetic opera-’
tions, the microprogram seqguence used in these instructions should.
be reviewed carefully. As small sequences of firmware are written,
it will become apparent that perhaps some fields of the micro-
program could be shared in the memory. For example, it may become
apparent that the interrupt control microprogram bits and the A
source operand microprogram bits never occur in the same micro-
instruction. Thus, perhaps if four bits are used for interrupt
control and four bits are used for A source operand select, then
these four bits might use the same four-bit field in the memory.
This would save a four-bit field throughout the entire microprogram
memory addressing space. However, it will be necessary to determin
which field is present in the word in the pipeline register. Thus
one bit may be dedicated in the entire microprogram word field
to distinguish between format number 1 and format number 2. When
this bit is a zero, the machine recognizes format 1 and applies
these four bits to the source operand control. When this bit
is a logic 1, the machine recognizes that format number 2 is in
the format register and applies this field to the interrupt
control.




From this discussion, it should be apparent that perhaps four
different formats might be utilized by the machine and a two-bit
field used to identify which of the formats is in the pipeline
register. In some designs, parts of the pipeline register may
be repeated more than one time for some control fields. If this
is the case, then it becomes necessary to select the appropriate
register to be loaded by the microinstruction coming from the
memory for this field. Thus, the two bits determining the format
may be decoded using a two-line to four-line decoder such as the
Am25LS139. The appropriate output from the Am25LS139 can enable
a register with a clock enable function such as on the Am25LS507,
Am25LS08 or Am25LS377 such that the microprogram memory word is
loaded into the appropriate register for use by the machine.

The primary advantage of formatting the microprogram word
is to save bits in width for the microprogram memory. Occasionally, ¥
as the formatting becomes more complex, it will be found that >
two fields are required simultaneously. Thus, this can result
in an extra microinstruction being required to be able to perform
all of the functions reguired by the microprogram control. Nor-
mally, anywhere from two to eight different formats can be found
useful in the microprogramming of many machines.

{ é

For the design engineer doing his first microprogramming job,
the emphasis should be on layout of the architecture of the machine
to meet the required specification. Should the design accidentally
use too many bits in microword width, it would be unfortunate
but not catastrophic. The machine would still perform properly
and meet specification and, in many cases, only one or two extra
integrated circuits would have been used. Based on the cost of
Field Programmable Read Only Memories, this cost is not unacceptable.
Also, it is possible that such an approach may considerably reduce
the overall design time of the machine. As the designer gains
experience, he will become more proficient in formatting micro-
program words and will soon find he can generate microprogram
control architectures with reasonable speed.

SUMMARY

The Am2909 provides a unique solution to the microprogram
memory sequence control problem. It is particularly well suited
for high-performance computer control units using overlap fetch
of the next address in microprogram memory. By using a micro-
sequencer control PROM, the functional control of the next address
selection can be uniquely defined. In addition, operations involving
the internal stack can be selected as desired. The Am2909 is also
a useful device in state machine control design. That is, control
of the microprogram memory can be programmed as needed for the
design.

The Am2911, being similar in design to the Am2909, provides
a similar type of control in the 20-pin, 0.3" centers package.
This package provides lower cost because of its reduced size
and complexity. In addition, this package requires less printed
circuit board area than the 28-pin Am29%09 but provides almost
the same functional capability.

2-29






