RRRNRRINRRIRREIRLIEEIRRRIRINGEER
RRRRRRRREGE NRRERRGERLEIERGESE
RRRRLRRLRGG SRRRRRRRERGEGLR
nnanaaﬂanax QIR
RIRRRIEIRRIRAEE. .

s - Dnaaﬂn

2 LH.,

il

REr

R

ek

R

e
b}

N

u Pu "u Pu Pu Pu
cl
/

¢\
el

.

Rk,
A
A
RRRRREGRRN.
RERRGRRGEER, |
SRRLLEERERRL.
<4/

M

w
el

1
el

RRRRRRRRIE &S
RN A).
ARRRRRRRRIREERN

DﬂﬂWﬂ

Advanced Micro Devices

Copyright © 1977 by Advanced Micro Devices, Inc.

Advanced Micro Devices

Microprogramming
Handbook
And Am2910 Emulation

By John R. Mick and Jim Brick

Second Edition

Copyright © 1977 by Advanced Micro Devices, Inc.

Advanced Micro Devices cannot assume responsibility for use of any circuitry described other than circuitry entirely
embodied in an Advanced Micro Devices’' product.

MICROPROGRAMMING A
BIPOLAR MICROPROCESSOR

By John R. Mick and Jim Brick

INTRODUCTION

With the advent of the Am2901 4-bit microprocessor slice and
the Am2909/Am2911 bipolar microprogram sequencers, the
design engineer can upgrade the performance of existing
systems or implement new systems taking advantage of the
latest state-of-the-art technology in Low-Power Schottky
integrated circuits. These devices, however, utilize a new con-
cept in machine design not familiar to many design engineers.
This technique is called microprogramming.

Basically, a microprogrammed machine is one in which a co-
herent sequence of microinstructions is used to execute
various commands required by the machine. If the machine is
a computer, each sequence of microinstructions can be made
to execute a machine instruction. All of the little elemental
tasks performed by the machine in executing the machine
instruction are called microinstructions. The storage area for
these microinstructions is usually called the microprogram
memory.

A microinstruction usually has two primary parts. These
are: {1) the definition and control of all elemental micro-
operations to be carried out and {2) the definition and control
of the address of the next microinstruction to be executed.

The definition of the various micro-operations to be carried
out usually includes such things as ALU source operand selec-
tion, ALU function, ALU destination, carry control, shift
control, interrupt control, data-in and data-out control, and so
forth. The definition of the next microinstruction function
usually includes identifying the source selection of the next
microinstruction address and, in some cases, supplying the
actual value of that microinstruction address.

Microprogrammed machines are usually distinguished from
non-microprogrammed machines in the following manner,
Older, non-microprogrammed machines implemented the
control function by using combinations of gates and flip-flops
connected in a somewhat random fashion in order to generate
the required timing and control signals for the machine.
Microprogrammed machines, on the other hand, are normaily
considered highly ordered and more organized with regard to
the control function field. In its simplest definition, a micro-
program control unit consists of the microprogram memary
and the structure required to determine the address of the
next microinstruction.

UNDERSTANDING THE MICROPROGRAM MEMORY

The microprogram memory is simply an N word by M bit
memory used to hold the various microinstructions. Figure 1
depicts the word number definition of an N word micro-
programmed memory. For an N word memory, the address
locations are usually defined as location 0 through location
N-1. For example, a 266-word microprogram memory will
have address locations O through 255,

Each word of the microprogram memory consists of M bits.
These M bits are usually broken into various field definitions.
A typical example of field definition is shown in Figure 1

1-1

WORD

ENERDDEEIE
| 1 I

1 2 3 4 56 7 8 9

FIELD

Figure 1. Organization of an N-Word by M-Bit
Microprogram Memory.

where a 32-bit word made up of nine fields is depicted. It
should be noted that the fields can consist of various numbers
of bits. For example, field number 1 is 5 bits wide, field num-
ber 2 is 8 bits wide, field number 6 is 1 bit wide, and so forth.
It is the definition of the various fields of a microprogram
word that is usually referred to as FORMATTING, Thus,
Figure 1 shows the FORMAT of a 32-bit microinstruction.

An example of how microinstruction fields are defined in a
typical machine microprogram memory word, as shown in
Figure 1, is as follows:

Field 1 — General purpose

Field 2 — Branch address

Field 3 — Next address control

Field 4 - interrupt control

Field 5 — Fast clock/slow clock select
Field 6 — Carry control

Field 7 — ALU source operand control
Field 8 — ALU function control

Field 9 — ALU destination control

SEQUENCING THROUGH MICROINSTRUCTIONS

Once the microprogram format has been defined, it is neces-
sary to execute sequences of these microinstructions if the
machine is to perform any real function. In its simplest form,
all that is required to sequence through a series of micro-
instructions is a microprogram address counter. Such a sim-
plified microprogram memory address control is shown in
Figure 2. The microprogram address counter simply incre-
ments by one on each clock cycie to select the address of the
next microinstruction. For example, if the microprogram
address counter contains address 23, the next clock cycle
will increment the counter and it will select address 24, The
counter will continue to increment on each clock cycle there
by selecting address 25, address 26, address 27, and so forth.
If this were the only control available, the machine would
not be very flexible but it would be able to execute a fixed
pattern of microinstructions.

MICROPROGRAMMING A BIPOLAR MICROPROCESSOR

MICROPROGRAM ADDRESS COUNTER

N cLocK

ADDRESS

MICROPROGRAM MEMORY

M

QUTPUT

Figure 2. Microprogram Memory Address Control
Using a Counter.

The technique of continuing from one microinstruction to
the next sequential microinstruction is usually referred to as
CONTINUE or EXECUTE. Thus, in microprogram control
definition, we will use the CONTINUE (CONT) or EXECUTE
(EXEC) statement to mean simply incrementing to the next
microinstruction.

MICROPROGRAM BRANCHING OR JUMPING

[f the microprogram control unit is to have the ability to
select other than the next microinstruction, the control unit
must be able to load a BRANCH or JUMP address. Figure 3
shows a control unit architecture whereby a BRANCH address
can be paralle! loaded into the microprogram address counter.
The foad control is a single bit field within the microprogram
word format. Let us call this one-bit field the microprogram
address counter load enable bit. When this bit is at logic 0, a
load will be inhibited and when this bit is logic 1, a load will
be enabled. If the load is enabled, the BRANCH address con-
tained within the microprogram memory will be paralliel
loaded into the microprogram address counter. This results
in the ability to perform an N-way branch. For example, if
the branch address field is eight bits wide, a BRANCH to any
address in the memory space from word 0 through word 255
can be performed.

|

MICROPROGRAM
ADDRESS COUNTER

M N cLocK

ADDRESS
MICROPROGRAM MEMORY

LOAD
BRANCH
ADDRESS CONTROL OTHER
BIT
: i
OTHER

The simple branching control feature described in Figure 3
allows a microprogram memory controlfer to execute sequen-
tial microinstructions or perform a BRANCH (BR) or JUMP
(JMP) to any address either before or after the address cur-
rently contained in the microprogram address counter.

CONDITIONAL BRANCHING

While the BRANCH or JUMP instruction has added some
flexibility to the sequencing of microprogram instructions,
the controller still lacks any decision-making capability. This
decision-making capability is provided by the CONDITIONAL
BRANCH (COND BR) instruction. Figure 4 shows a func-
tional block diagram of a microprogram memory/address con-
troller providing the capability to branch on either of two
different conditions. In this example, the load select control
is a two-bit field used to control a four-input multiplexer.
When the two-bit field is equivalent to binary zero, the multi-
plexer selects the zero input which forces the load control
inactive. Thus, the CONTINUE microprogram control instruc-
tion is executed. When the two-bit load seiect field contains
binary one, the D input of the multiplexer is selected. Now,
the load control is a function of the Condition 1 input. If
Condition 1 is logic 0, the microprogram address counter in-
crements and if Condition 1 is logic 1, the branch address
will be parallel loaded in the next clock cycle. This operation
is defined as a CONDITIONAL BRANCH. {f the load select
input contains binary 2, the D2 input is selected and the same
conditional function is performed with respect to the Condi-
tion 2 input. If the load select field contains binary 3, the D3
input of the multiplexer is selected. Since the D5 input is tied
to logic HIGH, this forces the microprogram address counter
to the load mode independent of anything else. Thus, the

CONDITION 2
v
cc
CONDITION 1
GND ————]
Dy D4 D, Dy
81
MULTIPLEXER
So
ouTPUT
_______‘ g
DATA LOAD
MICROPROGRAM
ADDRESS COUNTER
: T
ADDRESS
MICROPROGRAM MEMORY
BRANCH LOAD
ADDRESS SELECT OTHER
OTHER

Figure 3. Branching or Jumping in a Microprogram Memory
Space Requires a Branch Address and a Load
Control Signal.

Figure 4. A Two-Bit Control Field Can be Used
to Select CONTINUE, BRANCH, or
CONDITIONAL BRANCH.

MICROPROGRAMMING A BIPOLAR MICROPROCESSOR

branch address is loaded into the microprogram address
counter on the next clock cycle and an UNCONDITIONAL
JUMP s executed. This load select control function defini-
tion is shown in Table I.

TABLE |
LOAD SELECT CONTROL FUNCTION

S18g Function

0 0 | Continue

01 Jump Condition 1 True
1 0 | Jump Condition 2 True
11 Jump Unconditional

An example of the power of CONDITIONAL BRANCHING
is shown in Figures 5A and 5B. Here, ignoring the start-up
problem, let us assume the microprogram address counter
contains the word 0. The instruction being executed is a con-
ditional test on Condition 1 input. If Condition 1 is true,
branch to word 4 and if Condition 1 is false, continue. Word 1
performs a test on Condition 2. This test results in a branch to
word 8 if true, or a continue if false. Word 2 performs a con-
dition test on Condition 1. If true, a branch to word 12 oc-
curs, if false a continue to word 3 occurs. Word 3 is an uncon-
ditional branch to the starting address at word 0. In this
example, if a jump occurs to either word 4, 8 or 12. The net
result is that the next four instructions are executed and then
an unconditional branch to word O occurs. The flow table
for this 16-word microprogram is shown in Figure 5B.

MICROPROGRAM MEMORY
Word
0 4 1
1 8 2
2 12 1
3 [§] 3
4 X 0
5 X 0
6 X 0
7 0 3
8 X 0
9 X 0
10 X 0
1 0 3
12 X 0
13 X 0
14 X 0
15 0 3
R
BRANCH L.LOAD
ADDRESS SELECT
X = Don't Care

Figure BA. Conditional Branching Example.

1-3

Figure 5B. Flow Table for CONDITIONAL BRANCH
Example.

The microprogram control flow described in Figures 5A and
bB represent a simple state machine design controller that
looks for either Condition 1 to occur, Condition 2 to occur,
or not Condition 2 followed by Condition 1 occurring before
a reset to word Q. In the event any of the conditions do occur,
a small series of tasks (four microinstructions) are to be exe-
cuted and then the machine returned to word 0. If none of the
test conditions occur, the machine is reset at word 3 and re-
turned to the test at word 0. At power-up, an asynchronous
reset could be applied to the microprogram address counter
to initialize the machine. Although Figure 5A and Figure 5B
describe an extremely simple microprogram control unit, it is
representative of the microprogram control power contained
in only three basic microinstructions. These microinstructions
are the CONTINUE instruction, the UNCONDITIONAL
JUMP instruction, and the CONDITIONAL JUMP instruction.

OVERLAPPING THE MICROPROGRAM
INSTRUCTION FETCH

Now that a few basic microprogram address control instruc-
tions have been defined, let us examine the control instruc-
tions used in a microprogram control unijt featuring the over-
lap fetching of the next microinstruction. This technique is
also known as “pipelining.” The block diagram for such a
microprogram control unit is shown in Figure 6. The key
difference when compared with previous microprogrammed
architectures is the existence of the “pipeline register’’ at the
output of the microprogram memory. By definition, the pipe-
line register {or microword register) contains the microinstruc-
tion currently being executed by the machine. Simultaneously,
while this microinstruction is* being executed, the address of
the next microinstruction is applied to the microprogram
memory and the contents of that memory word are being
fetched and set-up at the inputs to the pipeline register. This
technique of pipelining can be used to improve the perfor-
mance of the microprogram control unit. This results because
the contents of the microprogram memory word required for
the next cycle are being fetched on an overlapping basis with
the actual execution of the current microprogram word. It
should be realized that when the pipeline approach is used,

MiCROPROGRAMMING A BIPOLAR MICROPROCESSOR

the microprogram fetch, the current microinstruction being
executed and the results of the previous microinstruction are
available with respect to each other simuttaneously. Said
another way, the design engineer must be aware of the fact
that some registers contain the results of the previous micro-
instruction executed, some registers contain the current
microinstruction being executed, and some registers contain
data for the next microinstruction to be executed.

Let us now compare the block diagram of Figure 6 with that
shown in Figure 4. The major difference, of course, is the
addition of the pipeline register at the output of the micro-
program control memory. Also, notice the addition of the
address multiplexer at the source of the microprogram mem-
ory address. This address multiplexer is used to select the
microprogram counter register or the pipeline register as the
source of the next address for the microprogram memory.
The condition code multiplexer is used to control the address
multiplexer in this address selection. By placing an incre-
menter at the output of the address multiplexer, it is possible
to always generate the current microprogramming address
“plus one’" at the input of the microprogram counter register.

CONDITION 2~ Vee
CONDITION 1
GND ———1
Do Dy 22 D3

S

CONDITION CODE
MULTIPLEXER

S
ouTPUT
N

1 0

MICROPROGRAM
COUNER |~
=15 mux REGISTER
ouTPUT
]-——— INCREMENTER
N N

ADDRESS

MICROPROGRAM MEMORY

NEXT
e ADDRESS OTHER
! SELECT

R SR

PIPELINE REGISTER

] l

CLOCK

Figure 6. Overlapping {or Pipelining) the Fetch of the
Next Microinstruction.

In Figure 4, the microprogram address counter was described
as a device such as the Am25L5161 counter. In the implemen-
tation as shown in Figure 6, the Am25LS161 counter is not
appropriate. Instead, an incrementer and register are used to
give the equivalent effect of a counter.

The key difference between using a true binary counter and
the incrementer register described here is as follows. When
the branch address from the pipeline register is selected by
the multiplexer, the incrementer will combinatorially prepare
that address plus one for entry into the microprogram counter
register. This entry will occur on the LOW-to-HIGH transition
of the clock. Thus, the microprogram counter register can
always be made to contain address plus one, independent of
the selection of the next microinstruction address. When the
address muitiplexer is switched so that the microprogram
counter register is selected as the source of the microprogram
memory address, the incrementer will again set-up address
plus one for entry into the microprogram counter register.
Thus, when the address multiplexer selects the microprogram
counter register, the address multiplexer, incrementer and
microprogram counter register appear to operate as a normal
binary counter.

The condition code multiplexer SgS¢ operates in exactly the
same fashion as described for the condition code multiplexer
of Figure 4. That is, binary zero in the pipeline register (the
current microinstruction being executed) forces an uncondi-
tional selection of the microprogram register via Dg. Binary
one or binary two in the next address select control bits of the
pipeline register cause a conditional selection at the address
multiplexer via Dq or Dy. Thus, a CONDITIONAL BRANCH
can be executed. Binary three in the next address select por-
tion of the pipeline register causes an UNCONDITIONAL
BRANCH instruction to be executed via D3.

When the overall machine timing is studied, it will be ob-
served that the key difference between overlap fetching and
non-overlap fetching involves the propagation defay of the
microprogram memory. In the non-pipelined architecture,
the microprogram memory propagation delay must be added
to the propagation delay of all the other elements of the
machine. In the overlap fetch architecture, the propagation
delay associated with the next microprogram memory address
fetch is a separate loop independent of the other portion of
the machine.

SUBROUTINING IN MICROPROGRAMMING CONTROL

Thus far, we have examined the CONTINUE instruction as
well as the CONDITIONAL AND UNCONDITIONAL JUMP
instructions for overlap fetch. Just as in the programming of
minicomputers and microcomputers, the advantages of SUB-
ROUTINING can be realized in microprogramming. The idea
here, of course, is that the same block of microcode {or even
a single microinstruction) can be shared by several micro-
instruction sequences of a microcode. This results in the over-
all reduction in the total number of microprogram memory
words required by the design. If we are to jump to a sub-
routine, what is required is the ability to store an address to
which the subroutine should return when it has completed
its execution. Examining the block diagram of Figure 7, we
see the addition of a subroutine and loop (push/pop) stack
{also called the file}, and its associated stack pointer. The
control signals required by the stack are an enable stack
signal (FE) which will be used to tell the file whenever we
wish to perform a push or a pop, and a push/pop control
(PUP) used to control the direction of the stack pointer {push
or pop).

MICROPROGRAMMING A BIPOLAR MICROPROCESSOR

DATA BUS
INSTRUCTION REGISTER
OF CODE l OTHER
D; ADDRESS Am2911 MICROPROG RAM SEQUENCERS
STARTING oo FE, puP
——fTc counTer ADDRESS ~ OF | STACK POINTER
DECODER
LOAD/COUNT (MAPPING PROM)
ouTPUT
REGISTER
SUBROUTINE
AND LOOP STACK
MICROPROGRAM
COUNTER REGISTER
Db R F PC
So NEXT ADDRESS
MULTIPLEXER
51 INCREMENTER
OUTPUT
2 2 42 { 1
bt} 3
CARRY —=g 7 Am29811
w
NEXT
o
OVR —=={ & 8; ADDRESS ADDRESS
-
ZEROQ —={ 5 zu 5 POLARITY CONTROL MICROPROGRAM MEMORY
Q& & [F—=1 TEST
SN —=] 4 £E 5 CONTROL "
E ANCH NEXT ADDRESS
INRPT —] 3 Sg ADDRESS SELECT OTHER
[&]
ETC —=] 2 l l ‘
! 1
—o’éﬁ PIPELINE REGISTER]
! ‘ | L
TO Am2901
3
OTHER

Figure 7. A Typical Computer Control Unit Using the Am2911 and Am29811.

In this architecture, the stack pointer always points to the
address of the last microinstruction written to the file. This
allows the “next address multiplexer’ to read the file at any
time via port F. When this selection is performed, the last
word written on the stack will be the word applied to the
microprogram memory. The condition code muitiplexer of
the previous example has also been replaced by a next address
control unit. This next address control unit is the Am29811,
which can execute 16 different next address control functions
where most of these functions are conditional. Thus, the
device has four instruction inputs as well as one condition
code test input which is connected to the condition code
multiplexer. Note also that the next address control field of
the microprogram word has been expanded to a four-bit field.
Qutputs from the Am29811 are used to control the stack
pointer and the next address multiplexer of the Am2911. In
addition, the device has outputs to control the three-state
enable of the pipeline register and the three-state enable of

the starting address decode PROM. Also, the Am29811 has
outputs to control a counter that can be used as a loop counter
or event counter.

The 16 instructions associated with next address control for the
Am29811 are listed in Table I1-A and functionally described
in Table 11-B. As is easily seen by referring to Table I{-A, three
of the instructions in this set are associated with subroutining
in microprogram memory. The first instruction of this set, is
a simple conditional JUMP-TO-SUBROUTINE where the
source of the subroutine address is in the pipeline register. The
RETURN-FROM-SUBROUTINE instruction is also conditional
and is used to return to the next microinstruction following
the JUMP-TO-SUBROUTINE instruction. There is also a
conditional JUMP-TO-ONE-OF-TWO-SUBROUTINES, where
the subroutine address is either in the PIPELINE register or in
the internal REGISTER in the Am2911. This instruction will
be explained in more detail later.

MICROPROGRAMMING A BIPOLAR MICROPROCESSOR

TABLE II-A
Am29811 INSTRUCTION SET
MNEMONIC | 13 12 17 ig INSTRUCTION
JZ L L L L |[Jump to Address Zero
CJS L L L H | Conditional Jump-to-Subroutine with Jump Address
in Pipeline Register.
JMAP L L H L |Jump to Address at Mapping PROM Output.
CJP L L H H | Conditional Jump to Address in Pipeline Register
PUSH L H L L | Push Stack and Conditionatly Load Counter N
JSRP L H L H | Jump-to-Subroutine with Starting Address Conditionally
Selected from Am2911 R-Register or Pipeline Register.
CJv L H H L | Conditional Jump to Vector Address.
JRP L H H H | Jump to Address Conditionally Selected from Am2911
R-Register or Pipeline Register.
RFCT H L L L | Repeat Loop if Counter is not Equal to Zero.
RPCT H L L H | Repeat Pipeline Address if Counter is not Equal to Zero.
CRTN H L H L | Conditional Return-from-Subroutine.
CJPP H L H H | Conditional Jump to Pipeline Address and Pop Stack.
I.DCT H H L L | Load Counter and Continue.
LOOP H H L H | Test End of Loop.
CON’T H H H L | Continue to Next Address.
JP H H H H | Jump to Pipeline Register Address.

TABLE II-B
FUNCTIONAL DESCRIPTION OF Am29811 INSTRUCTION SET
INPUTS OUTPUTS
R
INSTRUCTION N TEST NEXT ADD FILE | COUNTER | MAP-E | PL-E
MNEMONIC 13 12 17 ig FUNCTIO INPUT SOURCE
Jz L L L L JUMP ZERO X D HOLD LL* H L
cJs L L L H COND JSB PL L PC HOLD HOLD H L
H D PUSH HOLD H L
JMAP L b H L JUMP MAP X D HOLD HOLD L H
CJP L L H COND JUMP PL L PC HOLD HOLD H L
H D HOLD HOLD H L
PUSH Lt H L L PUSH/COND LD CNTR L PC PUSH HOLD H L
H PC PUSH LOAD H L
JSRP L HLH COND JSB R/PL L R PUSH HOLD H L
H D PUSH HOLD H L
CJv L H HL COND JUMP VECTOR L PC HOLD HOLD H H
H D HOLD HOLD H H
JRP L H HH COND JUMP R/PL L R HOLD HOLD H L
H D HOLD HOLD H L
RFCT H L L L REPEAT LOOP,CNTR # 0 L £ HOLD DEC H L
H PC POP HOLD H L
RPCT H L L H REPEAT PL,CNTR # 0 L D HOLD DEC H L
H PC HOLD HOLD H L
CRTN H L H L COND RTN L PC HOLD HOLD H L
H F POP HOLD H L
CJPP H L HH COND JUMP PL & POP L PC HOLD HOLD H L
H D POP HOLD H L
LDCT H H L L LOAD CNTR & CONTINUE X PC HOLD LOAD H L
LOoP H H L TEST END LOOP L F HOLD HOLD H L
H PC POP HOLD H L
CONT H H H L CONTINUE X PC HOLD HOLD H L
JP HHHH JUMP PL X B HOLD HOLD H L
L=LOW H=HIGH X = Don’t Care DEC = Decrement *LL = Special Case

1-6

MICROPROGRAMMING A BIPOLAR MICROPROCESSOR

TYPICAL COMPUTER CONTROL UNIT
ARCHITECTURE USING THE
Am2911 AND Am29811

The microprogram memory control unit block diagram of Fig.
7 is easily implemented using the Am2911 and Am29811.
This architecture provides a structured state machine design
capable of executing many highly sophisticated next address
control instructions. The Am2911 contains a next address
multiplexer that provides four different inputs from which
the address of the next microinstruction can be selected.
These are the direct input (D), the register input {R), the
program counter (PC), and the file (F). The starting address
decoder (mapping PROM) output and the pipeline register
output are connected together at the D input to the Am2911
and are operated in the three-state mode.

The architecture of Figure 7 shows an instruction register
capable of being loaded with a machine instruction word from
the data bus. The op code portion of the instruction is decoded
using a mapping PROM to arrive at a starting address for the
microinstruction sequence required to execute the machine
instruction. When the microprogram memory address is to
be the first microinstruction of the machine instruction
sequence, the Am29811 next address control unit selects the
muitiplexer D input and enables the three-state output from
the mapping PROM. When the current microinstruction
being executed is selecting the next microinstruction address
as a JUMP function, the JUMP address will be available at the
multiplexer D input. This is accomplished by having the
Am29811 select the next address muitipiexer D input and
also enabling the three-state output of the pipeline register
branch address field. The register enable input to the Am2911
is connected to ground so that this register will always load the
value at the Am2911 D input. The value at D is clocked into
the Am2911°s register (R) at the end of the current micro-
cycle, which makes the D value of this microcycle available
as the R value of the next microcycle. Thus, by using the
branch address field of two sequential microinstructions, a
conditional JUMP-TO-ONE-OF-TWO-SUBROUTINES or a
conditional JUMP-TO-ONE-OF-TWO-BRANCH-ADDRESSES
can be executed by either selecting the D input or the R input
of the next address multiplexer.

When sequencing through continuous microinstructions in
microprogram memory, the program counter in the Am2911
is used. Here, the Am29811 simply selects the PC input of the
next address multiplexer. In addition, most of these instruc-
tions enable the three-state outputs of the pipeline register
associated with the branch address field, which allows the
register within the Am2911 to be loaded.

The 4 x 4 stack in the Am2911 is used for looping and sub-
routining in microprogram operations. Up to four levels of
subroutines or loops can be nested. Also, loops and subroutines
can be intermixed as long as the four-word depth of the stack
is not exceeded.

The 16 instructions for next address control were defined in
Table . Table il shows the truth table for the Am29811.
There are four instruction inputs, one test input, and eight out-
puts. The outputs are connected at various points throughout
the computer control unit architecture as shown in Figure 7.

1-7

DETAILED DESCRIPTION OF THE
Am2911 AND Am29811 IN A COMPUTER
CONTROL UNIT OR STRUCTURED STATE MACHINE

The detailed connection diagram of a straight-forward com-
puter control unit is shown in Figure 8 (A puli-out at the
back of this book). This design features all of the next address
control functions described previously in this paper. In ad-
dition, a few features have also been added.

Referring to Figure 8, the instruction register consists of two
Am251.8377 Eight-Bit Registers with Clock Enable. These
registers are designated as U1 and U2 and provides ability
to selectively load a 16-bit instruction. This particular design
assumes that the instruction word consists of an eight-bit op
code as well as eight bits of other data. Therefore, the op
code is decoded using three 256-word by 4-bit PROM's. The
Am29761 has been selected for this function and is shown in
Figure 8 as U3, U4 and Ub.

The basic control function for the microprogram memory is
provided by the Am2911’s. In this design, three Am2911’s
(U6, U7, and UB) are used so that up to 4K words of micro-
program memory can be addressed. The microprogram memory
can consist of PROM’s, ROM’s, or RAM's, depending on the
particular design and the point of its development. This
particular design shows the capability of a 64-bit microword;
however, the actual number of bits used will vary from design
to design.

The pipeline register associated with the computer controf unit
consists of five integrated circuits designated U16, U17, U18,
U19 and U20.

One of the features of the architecture depicted in Figure 8
is the event counter shown as U9, U10, and U11. This event
counter consists of three Am25L.S163's connected as a 12-bit
counter. The counter can be paraliel loaded with a 12-bit word
from pipeline registers U18, U19, and U20. The multiplexer
and D-type flip-flop {U21 and U22) at the counter overflow
output (U9) is present to improve system cycle time and will
be described in detail later.

This design also features a 16-input condition code multi-
plexer using two Am74S251’s, which are designated U12 and
U14. Condition code polarity control capability has been
added to the design by using an Am745158 Two-input Multi-
plexer designated as U13. The W outputs and Y outputs from
U12 and U14 have been connected together but only one set
of outputs will be enabled at a time via the three-state control
signal designated as Rog and Rog. Since the Y output is
inverting and the W output is non-inverting, the two-input
multiplexer, U13, can be used to select the test condition as
either inverting or non-inverting. This allows the test input on
the Am29811 Next Address Control Unit, U15, to execute
conditional instructions on either the inverted or non-inverted
polarity of the test signal. For example, a CONDITIONAL
BRANCH may be performed on either carry set or carry reset.
Likewise, the same CONDITIONAL BRANCH might be
performed on either the sign bit as a logic one or the sign
bit as a logic zero. Note that the Am29811 Next Address
Control Unit has eight outputs._Four outputs to control the
Am2911’s Sg, Sq, PUP, and FE inputs. Two outputs to
control the three-state enables of the devices connected to the
D inputs, i.e., a map enable (MAP E)} to select the mapping
PROMs and a pipeline enable (PL E) to enable the three-state
Am2918 outputs which make up a 12-bit wide branch address
field. The remaining two Am29811 outputs are for loading
and enabling the Am25L.S163 counters. CNT ENABLE from
the Am29811 is active-LOW while the Am25LS163 counter

MICROPROGRAMMING A BIPOLAR MICROPROCESSOR

TABLE I
Am29811 TRUTH TABLE
INPUTS OUTPUTS
NEXT FILE COUNTER
MNEMONIC FUNCTION ADDR a w
& | source w3 13 S lE e
i3 12 11 g +~ S1 Sp I a e} In.u = o
PiN NO. 14 13 12 11 10 4 5 3 2 6 7 1 9
Jz JUMP ZERO Lot LU WM H Ho| L L | L
L oL & L H H H H Ho| L Ll L
cJs COND JSB PL L L L H L LU H H | H HlH L
L Lt H H H H L H | wH H|H L
IMAP JUMP MAP L L H L L HoOH H "R M| L H
L L H L H H H H H | H oL H
cIP COND JUMP PL L L H H L LU H W H H | H L
L L H H H H H H Wl H H | H L
PUSH PUSH/COND LD CNTR | L H L L L [C H | H H | H L
L H Lt H LoL L H| L H | H L
JSRP COND JSB R/PL. L oM L H L L H L P H T H L
L H L H H H H L H | # H | H L
cv COND JUMP VECTOR L H H L L Lot H H | H HolH H
L H H L H H H H H H H H H
JRP COND JUMP R/PL L H H H L L H H W H H | A U
L H H H H H H H H | #H H|lH L
RFCT REPEATLOOP,CTR#0 |H L L L L H oL H LM L H U
H L L L H LU L L | w H|H L
RPCT REPEAT PL, CTR 40 H oL L H L W H H H] H L s L
H L L H H LL H H | H H | H L
CRTN COND RTN H L H L L LU H L | nH HH L
H L H L H H L L L H | H L
cJpp COND JUMPPL&POP | H t H H L [H LT H | H L
H L H H H H H L L H H|H L
LocT LD CNTR & CONTINUE | ®# ® L L L L L H H | L H | H L
H H L L H LoL H Ho| L H | H L
Loor TEST END LOOP H OH L H L H oL H L om H | H L
H H L H H LoL L L w HlH L
CONT CONTINUE H H H L L [H H | H H | H L
H H H L H LU H H | H H | H L
WP JUMP PL H H H H L HOH H H | oH H | A L L= Low
H H H W H H H H H | H|H L H = High

requires an active-HIGH enable, therefore CNT ENABLE

from the Am29811 is passed through one section of the
Two-Input Muitiplexer {U13) for inversion. An alternative
counter, the Am25L5169, has enable as active-LOW; there-
fore, this inversion through U13 is not required.

At this point, a discussion of the typical operation of this
computer control unit is in order. First, bits 0-11 of the
microprogram memory output word, are connected to the
pipeline register designated U18, U19, and U20. The Am2918
has been selected for this portion of the pipeline register
because of its continuous outputs and three-state outputs.
The three-state outputs are connected to the D inputs of
the Am2911 to provide a branch address whenever needed.
These 12 bits are designated BRg-BRq1. The Q outputs of
these same Am2918's are designated Rg-R 11 and are connected
to the parallel load input of the Am25LS163 Counters. Thus,
the counter can be loaded with any value between 0 and 4,095.
Many designs will take advantage of Rg-Rqq and use it as a
general purpose field whenever the counter is not being loaded
or a jump pipeline is not being performed. Using a micro-
program memory field for more than one function (branch
address and counter load value in this example) is called
FORMATTING and will be covered in greater detail later.
The other two devices in the pipeline register shown on the
architecture of Figure 8 are U16 and U17. First, U17 receives
four bits (12, 13, 14, and 15) from the microprogram memory
to provide four-bit instruction field to the Am29811. This
four-bit field, designated Rq5-Ry5, provides the actual next

address control instruction for the computer control unit.
R16 is the polarity control bit for the test input and is con-
nected to the select input of the Am74S158 Two-Input
Multiplexer. When Rqg is LOW, the signal at the Am29811
test input will be inverted, but when Rg is HIGH, the test
input will be non-inverted.

The Am74S5175 has been used as part of the pipeline register
{U16) because it has both inverting and non-inverting outputs.
Signals Rqy7, Rqg, and Ryg are used to control the One-of-
Eight Multiplexer (U12 and U14) A, B, and C inputs. Pipeline
register output Rog and ﬁ; are used to enable either the U12
outputs or the U14 outputs such that a one-of-sixteen multi-
plexer function is implemented. In this design, the TEST 0
input of U14 is connected to ground. This provides a conve-
nient path for converting any of the conditional instructions
to non-conditional instructions. That is, any of the conditional
instructions can be executed unconditionally by selecting the
TEST 0 input which is connected to ground and forcing the
polarity control to either the inverting or non-inverting condi-
tion. This allows the execution of unconditional JUMP,
unconditional JUMP-TO-SUBROUTINE, and unconditional
RETURN-FROM-SUBROUTINE instructions.

Bit 21 from the microprogram memory utilizes a flip-flop in
U17 as part of the pipeline register. This output, Rs1, is used
as the enable input to the instruction register. Needless to say,
other techniques for encoding this enable function in a for-
matted field could be provided.

MICROPROGRAMMING A BIPOLAR MICROPROCESSOR

UNDERSTANDING THE Am29811

The Am29811 is a next-address control unit for use in con-
junction with the Am2911 Bipofar Microprogram Sequencer.
This device provides 16 different instructions which control
the selection of the next microinstruction to be executed. In
addition, a test input is available on the device making many
of these 16 instructions conditional. The Am29811 provides
control of the Sy, Sy, PUSH/POP {PUP), and File Enable (FE)
inputs to the Am2911. The instruction set for the Am29811
was shown in Table Il and the actual TRUTH TABLE was
given in TABLE IIl.

Perhaps the best technique for understanding the Am29811 is
to simply take each instruction and review its operation. In
order to provide some feel for the actual execution of these
instructions, Figure 9 is included and depicts examples of all
16 instructions.

The examples given in Figure 9 should be interpretted in the
following manner. The intent is to show microprogram flow
as various microprogram memory words are executed. For
example, the continue instruction, instruction number 14 as
shown in Figure 9, simply means that the contents of micro-
program memory word 50 is executed, then the contents of
word 51 is executed. This is followed by the contents of
microprogram memory word 52 and the contents of micro-
program memory word 53. The microprogram location counter
addresses used in the examples were arbitrarily chosen and
have no meaning other than to show instruction flow. One
exception to this is the first example, JUMP ZERO, which
forces the microprogram location counter to address ZERO.
Each dot refers to the time that the contents of the micro-
program memory word is in the pipeline register. The instruc-
tion field being dealt with in these examples is that of the
Am29811 Next Address Control Unit, bits lg, 14, |2, and |3,
and are supplied via pipeline register U17 (Figure 8). While
no special symbology is used for the conditional instructions,
the text to follow will explain what the conditional choices
are in each example.

It might be appropriate at this time to mention that AMD has
a microprogram assembler called AMDASM, which has the
capability of using the Am29811 instructions in symbolic
representation. AMDASM’s Am29811 instruction symbolics
(or mnemonics) are given in Figure 9, in parenthesis — for
each instruction, and were also shown in Table 1.

The first instruction, number 0, is the JUMP ZERO function.
As depicted in Figure 8, no matter what instruction is currently
being executed, the address of the next instruction is 0 and
the contents of word O will be executed next. it should be
noted at this time that if the counter is also used, one half
of an Am745139 Decoder will be required to provide the
proper connection for the ZERQ input on the Am?2911.
This particular connection is shown in Figure 11 and will be
discussed in greater detail in the section describing extended
enable control. Normally, the JUMP ZERO instruction pro-
vides one technique for returning to a known address when the
pipeline register is cleared. Many designs use this feature for
power-up sequences and provide the power-up firmware
beginning at microprogram memory word location 0. In these
cases, the “zero” input of the Am2911's may be connected
elsewhere and this instruction not used.

Instruction number 1 is a CONDITIONAL JUMP-TO-SUB-
ROUTINE via the address provided in the pipeline register.
As shown in Figure 9, the machine might have executed
words at addresses 50, 51, and 52. When the contents of
address 52 is in the pipeline register, the next-address control

1-9

function is the CONDITIONAL JUMP-TO-SUBROUTINE.
Here, if the condition is passed (TEST input HIGH), the
next instruction executed will be the contents of micro-
program memory location 90. If the test has failed {LOW at
the TEST input), the JUMP-TO-SUBROQUTINE will not
be executed; the contents of microprogram memory location
53 will be executed instead. Thus, the CONDITIONAL JUMP-
TO-SUBROUTINE instruction at location 52 will cause either
location 90 or location 53 to be executed next. If the TEST
input is such that location 90 is executed, value 53 will be
pushed onto the Am2911 internal stack. This provides the
return linkage for the machine when the subroutine beginning
at location 90 is completed. In this example, the subroutine
was completed at location 93 and a return-from-subroutine
would be executed.

Instruction number 2 is the JUMP MAP instruction. This is an
unconditional instruction which causes the mapping PROM
outputs to be enabled so that the next microinstruction loca-
tion is determined by the address supplied via the mapping
PROM’s. Normally, the JUMP MAP instruction is used at the
end of the fetch sequence for the machine. In the example of
Figure 9, microinstructions at locations 50, 51, 52, and 53
might have been the fetch sequence and at its completion at
location 53, the jump map function would be contained in the
pipeline register. This example shows the mapping PROM
outputs to be 90; therefore, an unconditional jump to micro-
program memory address 90 is performed.

Instruction number 3, CONDITIONAL JUMP PIPELINE,
derives its branch address from the pipeline register branch
address value (BRg—BRyq in Figure 9). This instruction
provides a technique for branching to various microprogram
sequences depending upon the test condition inputs. Quite
often, state machines are designed which simply execute
tests on various inputs waiting for the condition to come true.
When the true condition is reached, the machine then branches
and executes a set of microinstructions to perform some
function. This usually has the effect of resetting the input
being tested until some point in the future. Figure 9 shows the
conditional jump via the pipeline register address at location
52. When the contents of microprogram memory word 52 are
in the pipeline register, the next address will either be location
53 or location 30 in this example. If the test is passed (TEST
input is HIGH), the value currently in the pipeline register {30)
will be selected. If the input being tested fails {TEST inputis
LOW), the next address selected will be contained in the
microprogram counter which, in this example, is 53. This is
exactly the same technique as described earlier in Figure 5 of
this paper.

Instruction number 4 is the PUSH/CONDITIONAL LOAD
COUNTER instruction, and is used primarily for setting up
loops in microprogram firmware. In Figure 9, when instruction
52 is in the pipeline register, a PUSH will be made on the stack
and the counter will be loaded based on the condition. When
the stack is pushed, the value pushed is always the next
sequential instruction address. In this case, the address is 53.
If the TEST input is LOW, the counter is not loaded, but if
the TEST input is HIGH, the counter will be loaded with the
value contained in the pipeline register branch address field.
Thus, a single microinstruction can be used to set up a loop to
be executed a specific number of times. Instruction number 8
will describe how to use the pushed value and counter for
looping.

Instruction number 5 is a CONDITIONAL JUMP-TO-SUB-
ROUTINE via the Am2911 internal REGISTER or the con-

MICROPROGRAMMING A BIPOLAR MICROPROCESSOR

0 JUMP ZERO (J2)

1 COND JSBPL (CJS)

50 STACK
. ®

52 20

53 a1

54 92

55 93

2 JUMP MAP (JMAP)}

51
52
53

90
91

3 COND JUMP PL (CJP)

50

51

52

53

54 30
31

4 PUSH/COND LD CNTR {PUSH)

STACK
50
51
52 REGISTER/
53 COUNTER

6 COND JUMP VECTOR (CJV)

50
51
52
53 20
54 21

7 COND JUMP R/PL (JRP}

70 80

5 COND JSB R/PL (JSRP)

8 REPEAT LOOP, CNTR # 0 (RFCT)

STACK
(PUSH)

REGISTER/
51 COUNTER
52
53
54

55

h

9 REPEAT PL,CNTR + 0 (RPCT)

COUNTER
50 (LDCT)
51
52

53

o

11 COND JUMP PL & POP (CJPP)

/@ STACK
{PUSH)

50

51 @~

52 ®» 70
53 ® S0 71
54 ® 30 91 72
55 @ { 81 92

56 @ 82

12 LD CNTR & CONTINUE (L.DCT}

COUNTER
50

51
52
53

.

10 COND RETURN (CRTN)

50
51
52
53
54
55

STACK
90
91
92
93
94
95
96
97

14 CONTINUE (CONT)

50
61
52
53

15 BHREEWAY BRANCH(TWB)

50

51
52

!

13 TEST END LOOP (LOOP)

50
51
52
53
54
55
56
57

STACK
(PUSH)

1-10

Figure 9. Am29811 Next Address Execution Examples.

MICROPROGRAMMING A BIPOLAR MICROPROCESSOR

tents of the PIPELINE register. As shown in Figure 9, a push is
always performed and one of two subroutines executed. In
this example, either the subroutine beginning at address 80 or
the subroutine beginning at address 90 will be performed. A
return-from-subroutine (instruction number 10} returns the
microprogram flow to address 55. In order for this micro-
instruction control sequence to operate correctly, both the
next address fields of instruction 53 and the next address fields
of instruction 54 would have to contain the proper value. Let’s
assume that the branch address fields of instruction 53 contain
the value 90 so that it will be in the Am2911 register when the
contents of address b4 are in the pipeline register {remembering
that during any current microcycle, R contains the value of D
from the previous microcycle). Now if the TEST input is LOW,
the contents of the register (value = 90) will select the address
of the next microinstruction. If the TEST input is HIGH, the
pipeline register contents (value = 80) will determine the
address of the next microinstruction. Therefore, this instruc-
tion provides the ability to select one of two subroutines to be
executed based on a test condition.

Instruction number 6 is a CONDITIONAL JUMP VECTOR
instruction which provides the capability to take the branch
address from a third source heretofore not discussed. In order
for this instruction to be usable, the Am29811 three-state
control fields must be decoded using one half of an Am745139
Two-Line to Four-Line Decoder. When this instruction is
executed, both MAP E and PL E outputs of the Am29811 are
HIGH. Using MAP E and PL E as respective inputs to the
Am745139 2A and 2B inputs allows the Two-Line to Four-
Line Decoder to select a third source via the 2Y3 output.
U15, U16, U24, and U25 in Figure 11 clearly show this
configuration. This instruction provides one technique for
performing interrupt type branching at the microprogram
level and is discussed in greater detail in the section describing
extended enable control. Since this instruction is conditional,
a HIGH at the TEST input of the Am29811 causes the next
address to be taken from the vector source, while a LOW at
the TEST input causes the next address to be taken from the
program counter. In the example of Figure 9, if the CONDI-
TIONAL JUMP VECTOR instruction is contained at location
52, execution will continue at vector address 20 if the TEST
input is HIGH and the microinstruction at address 53 will be
executed if the TEST input is LOW.

Instruction number 7 is a CONDITIONAL JUMP via the
contents of the Am2911 internal REGISTER or the contents
of the PIPELINE register. This instruction is very similar to
instruction number 5; the conditional jump-to-subroutine via
R or PL. The major difference between instruction number 5
and instruction number 7 is that no push on the stack is per-
formed with the latter. Figure 9 depicts this instruction as a
branch to one of two locations depending on the test condi-
tion. The example in Figure 9 assumes the pipeline register
contains the value 70 when the contents of address 52 is being
executed. As the contents of address 53 is clocked into the
pipeline register, the value 70 is loaded into the register in
the Am2911. The value 80 is available when the contents of
address 53 are in the pipeline register. Thus, control is trans-
ferred to either address 70 or address 80 depending on the
TEST input to the Am29811.

Instruction number 8 is the REPEAT LOOP, COUNTER
ZERO instruction. This instruction is useful only if the
Am251.8163 Counters are in the system. This instruction
can be used to perform a timed wait or to execute some
microinstruction a specific number of times. For example,
a byte swap can be performed in a 16-bit machine by executing

1-11

a single-bit rotate instruction eight times. The execution of
this instruction assumes that the condition code multiplexer is
selecting the counter TC output and applying it to the TEST
input of the Am29811 with the proper polarity. If the counter
is not equal to zero (all 1's is the zero condition for the
Am25L5163), the test failed and the loop will be performed.
This is accomplished by selecting the file output as the address
of the next microinstruction. When this occurs, a count signal
is applied to the Am25LS163 Counters. If the counter is equal
to “zero” (TEST input HIGH), the loop is not repeated but
rather the next microinstruction from the program counter is
selected as the next address. In addition, the counter is not
decremented but rather its current value is held. Since an exit
has been made from the loop, the address on the stack is no
longer needed and the file is maintained by performing a POP.
This clears the file of the address that was PUSHed to set up
the loop. In the example of Figure 8, the Am25L5163 Counter
is used. It must be loaded with the one’s complement of the
desired number. The Am25L.S163 is then incremented to the
all 1's condition to execute the ’‘counter not equal to zerc”
function. This will be discussed in more detail later.

An example of the repeat loop counter not equal to zero
instruction is shown in Figure 9. in this example, location 50
most likely wouid contain a PUSH/Conditional Load counter
instruction which would have caused address 51 to be PUSHed
on the stack and the counter to be loaded with the proper
value for looping the desired number of times. In the design
depicted in Figure 8, the loop shown in Figure 9 will be
executed N+2 times where N is the value loaded in the counter
(one’s complement actually loaded).

The REPEAT LOOP, COUNTER # ZERO instruction is
actually contained in the microinstruction at address 54. Here,
depending on the test input, the sequence will either branch
to address 51 or continue to address 55.

Single microinstruction loops provide a highly efficient capa-
bility for executing a specific microinstruction a fixed number
of times. Examples include fixed rotates, byte swap, fixed
point muitiply, and fixed point divide.

Instruction number 9 is the REPEAT PIPELINE REGISTER,
COUNTER # ZERO instruction. This instruction is similar to
instruction number 8 except that the branch address now
comes from the pipeline register rather than the file. In some
cases, this instruction may be thought of as a one-word file
extention; that is, by using this instruction, a loop with the
counter can still be performed when subroutines are nested
four deep. This instruction’s operation is very similar to that
of instruction number 8 with the only difference being that
on this instruction, a failed test condition causes the source
of the next microinstruction address to be the D inputs. Also,
when the test condition is passed, this instruction does not
perform a POP because the stack is not being used.

In the example of Figure 9, the REPEAT PIPELINE, COUNT-
ER # ZERO instruction is instruction 52 and is shown as a
single microinstruction loop. The address in the pipeline
register would be 52. Most likely, instruction 51 in this example
would be the Load Counter and Continue instruction (number
12) so that the counter is loaded properly. While the example
shows a single microinstruction loop, by simply changing the
address in a pipeline register, multi-instruction loops could be
performed in this manner for a fixed number of times as deter-
mined by the counter.

Instruction number 10 is the conditional RETURN-FROM-
SUBROUTINE instruction. As the name implies, this instruc-
tion is used to branch from the subroutine back to the next

MICROPROGRAMMING A BIPOLAR MICROPROCESSOR

microinstruction address following the subroutine call. Since
this instruction is conditional, the return is only performed if
the test is passed {(TEST input HIGH). If the test is failed
(TEST input LOW), the next microinstruction in this sub-
routine sequence is performed. The exampie in Figure 9
depicts the use of the conditional RETURN-FROM-SUB-
ROUTINE instruction in both the conditional and uncondi-
tional mode. This exampie shows a jump-to-subroutine at
instruction 52 where control is transferred to instruction 90.
At instruction 93, a conditional RETURN-FROM-SUBROU-
TINE instruction is performed. If the TEST input is true, the
stack is. accessed and the program will transfer to the next
instruction at address 53. If the TEST input is false, the next
microinstruction at address 94 will be executed. The program
will continue to instruction 97 where the subroutine is com-
plete. To perform an unconditional RETURN-FROM-SUB-
ROUTINE, the conditional RETURN-FROM-SUBROUTINE
instruction is executed and the condition code is forced to the
pass state by selecting the known signal at the condition code
multiplexer (Test 0 of U14 in Figure 8), thus forcing the TEST
input to be HIGH.

Instruction number 11is the CONDITIONAL JUMP PIPELINE
register address and POP stack instruction. This instruction
provides another technique for loop termination and stack
maintenance. The example in Figure 9 shows a loop being
performed from instruction 55 back to instruction 51. Instruc-
tion 52, instruction 53, and instruction 54 are all conditional
JUMP and POP instructions. At instruction 52, if the TEST
input is passed {true), a branch will be made to instruction 70
and the stack will be properly maintained via a POP. Should
the test input be false, instruction 53 {the next sequential
instruction) will be executed. Likewise, at instruction 53,
either instruction 90 or instruction 54 will be subsequentiy
executed, respective to the test being true or false. Instruction
54 follows the same rules, going to either instruction 80 or
instruction 55. An instruction sequence as described here,
using the CONDITIONAL JUMP PIPELINE and POP instruc-
tion, is very useful when several inputs are being tested and the
microprogram is looping waiting for any of the inputs being
tested to come true before proceeding to another sequence of
instruction.

Instruction 12 is the LOAD COUNTER and CONTINUE
instruction, which simply enables the counter to be loaded
with the value at its parallel inputs. These inputs are normally
connected to the pipeline branch address field which (in the
architecture being described here) serves to supply either a
branch address or a counter value depending upon the micro-
instruction being executed. In this case, the instruction is a
load counter and the value contained in the pipeline branch
address register is parallel loaded into the Am25LS163 Count-
ers. As mentioned earlier in this paper, Am25LS169 Counters,
connected in the down count mode, may be used in place of
the Am25LS163's and this connection is shown in Figure 10.
Note that the counter enable signal, CNT ENABLE of U15, is
not inverted through U13 as when using the Am25LS163
Counters.

Figure 10 shows the carry/borrow output of the last counter
stage connected to 1Co of an Am25LS153 Four-Input multi-
plexer. When the counters are enabled for counting (CNT

1-12

ENABLE), the A input to the Am25L5153 is pulled LOW and
the carry/borrow from the last counter (US) is gated to the Dy
input of a Am748174-type D flip-flop (U22). This has the
effect of pipelining the terminal count signal so that carry/
borrow propagation delay through the counters does not
become a factor in machine timing. The result of this pipelining
is that one additional count is added to the count cycle. If the
value N is loaded into the Am25LS169 counter, the loop or
sequence will be executed N+2 times. That is, a loop count of
98 loaded into the counter and a Repeat Loop Counter Not
Equal to Zero instruction performed will cause the instruction
in the loop to be executed 100 times. Still referring to Figure
10, when counter load (CNT LOAD) and counter enable (CNT
ENABLE) are either both LOW or both HIGH, the Qg output
of U22 is routed back through U21 {via 1Cq or 1C3), thus
holding the current pipelined counter state. The capability of
branching out of a counter controiled microprogram foop
before the counter reaches zero exists, which means that the
counter pipeline, U22, could contain a HIGH or a LOW at the
time of the exit. Therefore, the signal CNT LOAD gets routed
to the B input of U21 to force a non-zero (HIGH) condition
into U22 {via the fixed HIGH at 1C4 on U21) when the counter
is loaded. This prevents a “zero-true’” condition test on the
first test following a LOAD counter. Pre-loading U22 1o a
HIGH condition on CNT LOAD also insures a proper “two”’
count when the counter is loaded with zero, i.e.; the instruc-
tion will be executed N+2 times where N is the load value in
the counter. It should be especially noted that when the
Am251.5163 Counters are being used as shown in Figure 8, the
one’s complement of the value N is foaded into the counters.
The Am25L51863 only counts up, therefore, each “DEC”
(decrement) instruction causes the counter to increment and
the “zero’’ condition at the carry out (CO) is reached when
the counter contains all one’s {HIGH's). In any event, the
result is the execution of N+2 “decrement”” {(DEC) cycles.

instruction number 13is the TEST END-OF-L.OOP instruction,
which provides the capability of exiting a loop at the bottom;
that is, this is a conditional instruction that wiil cause the
microprogram 1o loop, via the file, if the condition is false and
to continue to the next sequential instruction if true. The
example in Figure 9 shows the TEST END-OF-L.OOP micro-
instruction at address 56. If the test input is false {logic LOW),
the microprogram will branch to address 52. Address 52 is on
the stack because a PUSH instruction was executed at address
51. if the test input is true at instruction 56, the loop is termi-
nated and the next sequential microinstruction at address 57 is
executed, which also causes the stack to be POPed; thus accom-
plishing the required file maintenance.

instruction number 14 is the CONTINUE instruction, which
simply causes the program counter in the Am2911 to incre-
ment so that the next sequential microinstruction is executed.

Instruction number 15 is an unconditional JUMP PIPELINE
REGISTER instruction. This provides the ability to uncondi-
tionally branch to any address contained in the branch address
field of the microprogram. Thus, an unconditional N-way
branch can be performed. Use of this instruction as opposed
to a forced conditional jump pipeline instruction simply allows
the condition code multiplexer select field to be shared
(formatted) with other functions.

MICROPROGRAMMING A BIPOLAR MICROPROCESSOR

SKIP INSTRUCTION
AND LOOP INSTRUCTION

In recent months, there has been some discussion in various
microprogramming groups concerning the desirability of the
“SKIP” instruction in microprogram control. It is generally
believed that there are more powerful techniques for accomn-
plishing this function with faster speed and fewer micro-
instructions. For example, if the intent of the “SKIP" instruc-
tion is to skip around a branch instruction, then the conditional
jump is a more powerful technique. If the “SKIP” instruction
is intended to determine only whether the intervening instruc-
tion is executed or not, then the conditional jump-to-sub-
routine instruction becomes the more powerful approach and
saves overall memory space. In fact, for every example of
potential uses of the “SKIP” instruction, the Am29811/
Am2911 instruction set provides a more powerful technique
for accomplishing the stated task.

One of the most important features of the Am29811/Am2911
instruction set lies in the ability of these devices to execute
single microinstruction loops. Not only is this extremely
powerful, but is critical if the minimum microprogram memory
space is to be used in such algorithms as multiply and divide.
Also, single microinstruction subroutines can be performed
using these devices and this provides a sophisticated technique
for saving microprogram memory while performing the mini-
mum number of execution cycles.

A HIGH PERFORMANCE
COMPUTER CONTROL UNIT

The high performance CCU (Figure 11) is of a similar basic
design as the previously described CCU. The major differences
are, referring to Figure 11, the addition of an extended enable
control {U16), a vector input {U24 and U25), and an Am29803
16-way Branch Control Unit {U23). These performance en-
hancements are more related to function than to actual circuit
speed. The use of these enhancements by the microprogram
provides greater flexability in controlling a machines environ-
ment, and can reduce the microinstruction count required to
perform a particular task, which has the effect of increasing
overall system throughput.

In describing this high performance CCU design, those sections
which remain unchanged from the previous description {Figure
8), will not be covered again. This includes the mapping
PROMS, sequencer, Am29811, counter, condition test inputs
and associated polarity control, and the pipeline register. The
areas that will be covered are: extended enable control (U16)},
Vector inputs {U24 and U25), and the Am29803 16-way
Branch Control Unit (U23).

Extended Enable Control

Extended enable control is accomplished via an Am745139
dual two-to-four line decoder in conjunction with the Am29811
next address control unit. In Figure 8, PL E and MAP E of the
Am?29811 were connected directly to the components that
they are to control {pipeline registers and mapping PROMS,
respectively). Likewise, CNT LOAD and CNT ENABLE are
connected directly to the counters that they control (with the
exception that CNT ENABLE requires inversion when using
Am25LS163 counters). In Figure 11, PL E, MAP E, CNT
LOAD, and CNT ENABLE go to the inputs of the Am74S139
two-to-four line decoder (U16). When either PL E or MAP E
is LOW, then either 2Yy or 2Y5 of U16 is LOW and either
the pipeline branch address registers or mapping PROMS are
enabled. If both PL E and MAP E are HIGH, then output 2Y3
of U16 is LOW enabliing the three state outputs of U24 and

U25 which are alternate microprogram starting address de-
coders (alternate mapping PROMS), and called VECTOR
INPUT in this design. Likewise, CNT LOAD and CNT ENABLE
follow the same rules, enabling the counter to load or count
via 1Yq and 1Yo of U16.

Vector Input

The “Vector Input” provides the system designer with a
powerful next starting address control. For example, one
possible use might be as an interrupt vector. For instance,
use the “‘Interrupt Request’ output of an Am2914 Vectored
Priority Interrupt Controller (or group of Am2914's) as an
input to one of the conditional test inputs of multiplexers
(U12 or U14)}. Then connect the Am2914 Vector Out lines to
the vector mapping PROMS {Vector input U24 and U25). The
microprogram then could, at the appropriate time, test for a
pending interrupt and if present, jump in microprogram
memory directly to the routine which handles the specific
interrupt as requested via the Am2914 Vector QOutput lines.
This routine will take the proper steps to preserve the status
of the interrupt system, and then will service the interrupt.
This is one of many possible uses for the Vector Input. Other
possible uses include both hardware and software “TRAP”
routines and so forth. As can be seen, the design presented
here uses the Vector Enable line (output 2Y3 of U16) to
enable an alternate starting address input at the Am2911.
This, however, does not preciude the use of other devices
in place of mapping PROMS as the D-input vector source.

Am29803 16-Way Branch Controi Unit

The Am29803 provides 16-way branch control when used in
conjunction with the Am2909 bipolar microprocessor se-
quencer, and is shown as U23 in Figure 11 with its pipeline
register U22. The Am29803 has four TEST-inputs, four
INSTRUCTION-inputs, four OR-outputs, and an enable
control. The four OR-outputs connect directly to the Am2909
OR-inputs {U8 in Figure 11). The four INSTRUCTION-inputs
to the Am29803 provide control over the TEST-inputs and
OR-outputs, and are provided by the microprogram via the
pipeline register U22 (Figure 11}.

Basically, the INSTRUCTION-inputs {lg—I3} provide sixteen
instructions (0—F4g) which can select sixteen possible com-
binations of the TEST-inputs and provide a specific output
on the OR-outputs depending upon the state of the inputs
being tested. (The subscript 16 refers to base 16). All possible
combinations of INSTRUCTION-inputs, TEST-inputs, and
OR-outputs are shown in Table 1V.

Note that instruction zero does not test any inputs (a disable
instruction). Instructions 1, 2, 4, and 8 test one input and can
cause a branch to one of two words. Instructions 3,5,6,9, 10
and 12 test two inputs and can jump to one of four words
{a 4-word page). Instructions 7, 11, 13 and 14 test three inputs
and can jump on an eight word page. Instruction number 15
tests all four inputs and the result can jump to any word on a
sixteen word page.

USING THE Am29803

In the architecture of Figure 11, the Am29803 allows 2-way,
4-way, 8-way, or 16-way branching as determined by selectable
combinations of the TEST-inputs. Referring to Table |V, the
ZERO instruction (all instruction bits LOW) inhibits the
testing of any TEST-inputs, thus providing LOW OR-outputs.
Any single TEST-input selected (Tg, Tq, T2 or T3) will result
in ORg being HIGH or LOW in correspondence with the

1-13

MICROPROGRAMMING A BIPOLAR MICROPROCESSOR

TABLE IV

Am29803 FUNCTION TABLE

MICROPROGRAMMING A BIPOLAR MICROPROCESSOR

polarity of the selected TEST-input. Selecting any combination
of two TEST-inputs results in the outputs ORg and/or OR4
being HIGH or LOW, following a mapped one-to-one relation-
ship, i.e., ORg and ORq will follow the TEST-inputs, but no
matter which pair of TEST-inputs are selected, their HIGH/
LOW condition is mapped to the ORg and ORq outputs.
Likewise, selecting any three TEST-inputs, will map their
HIGH/LOW condition to the ORg, OR4¢, and OR5 outputs.
Selecting ali four TEST-inputs, of course, causes a one-to-one
relationship to exist between the HIGH/LOW conditions of
the TEST-inputs and the corresponding OR-outputs. Refer to
Table 1V to verify the relationships between INSTRUCTION-
inputs, TEST-input, and OR-output. It is very important that
the mapping relationship between these signals be completely
understood. When using the Am29803 TEST-OR capability
as shown in Figure 11, the microprogrammer must position
the applicable microcode within microprogram memory so
that the low-order address bits are available for ORing. Se-
quencer instructions using the Am2909/2911 D-inputs (JRP,
JSRP, JP, and CJS in particular) are ideally suited for the
Am29803 TEST-OR capability. The jump-to-location, available
via pipeline BRg—BR11 or the Am2909/2911 register, can
contain the address of a branch table. A branch table is merely
a sequential series of unconditional jump instructions. The
particular jump instruction executed is determined by the
low-order address bits; that is, the first jump instruction in a
branch table must start at a location in microprogram memory
whose low-order address bit {or bits) is zero. If a single
Am29803 TEST-input is selected (2-way branching) then only
the least significant bit in the beginning branch table address
needs to be zero. Two Am29803 TEST-inputs selected (4-way
branching) requires that the branch table start on an address
with the low-order two bits equal to zero; 8-way branching
requires three low-order zero bits, and 16-way branching
requires four low-order zero address bits. Understanding this
branch control concept is really quite simple. The branch
table is located in microprogram memory beginning at a loca-
tion whose address has sufficient low-order zero bits to accom-
modate the number of selected Am29803 TEST-inputs. If, for
instance, three TEST-inputs were selected, the first jump
instruction in the branch table must be at an address whose
low-order three bits are zero, such as address OF845. The
second jump instruction in the branch table would begin in
microprogram memory address 0F94g. The third jump at
location OF Ay, the fourth at OFB4g, etc. Through all eight
locations {0F845—0FF;g). Assume the foliowing pipeline
instruction ({referring to Figure 11): (1) U22 selects three

Am29303 TEST-inputs, (2) U18 instructs the Am29811 Next
Address Controller to select the Am2909/2911 D-inputs, (3)
U16 enables the pipeline branch address as the D source, and
(4) U19, U20, and U21 supplies the address OF8;g as the
branch address. The Am29803 TEST-inputs wil be ORed
into the low-order three bit positions, thus providing a jump
entry into the branch table /ndexed by the value of the OR
bits. Each instruction in the branch table is usually a jump
instruction, which allows the selection of a particular mi-
crocode routine determined by the value presented at the
Am29803 TEST-inputs. These jump instructions are the first
instruction of the particular sequence.

There are, of course, many other ways to use the Am29803
16-way Branch Control Unit. A variant of the use just described
here is given in the next section showing some AMDASM
microprogram assembler examples.

The microprogramn memory address supplied via an Am2209
sequencer can be modified by the Am29803 16-way Branch
Control Unit. Remember, however, that the microcode asso-
ciated with this address modification relies on certain address
bits being zero, therefore this microcode is not arbitrarily
relocatable. The above discussion describes using the D-input
and branching to provide low-order zero’s to use the OR
inputs. Through proper design, the Register, PC Counter, or
File can be used equally well.

PROGRAMMING THE HIGH
PERFORMANCE CCU WITH AMDASM

The high performance CCU shown in Figure 11, uses 26 bits
of the microword. To provide ease in understanding the
concepts, no FORMATTING is performed in the following
examples, a 64 bit wide microinstruction will be assumed,
although it is understood that the actual width of the micro-
program depends upen the specific system architecture. Also,
because this paper deals with only the CCU, the bits in the
microword which control the ALU’s and other functions
will not be referred to.

Table V summarizes the CCU fields defined and the required
parameters to be used in each field. Using the definitions in
Table V, any microprogram can be easily assembled. Because
the High Performance CCU is extremely versatile, it is very
difficult to show ail of the possibilities available for the user.
However, some of its capabilities will be demonstrated in the
following examples:

IrIC-IrFrIrIrIrIrIe

Function |3 |2 |1 ig T3 TZ T TO OR3 ORZ OR1 ORO
No Test L L L L X X X X L L L L
X X X L L L L L
Test Tg L L L H| Y X % a by - - L
X X L X L L L L
TestTq L I H L X X H X L C L a
X X L L L L L L
X X L H L L L H
Test Tg& Tq L L H H X % H L L L H L
X X H H L L H H
X L X X L L L [N
Test Tp L H Lo ot X X - L h L
X L X L L i L L
) X L X H L L L H
TestTog& Ty L H L H X H X L C h g L
X H X H L L H H
X L L X L L L L
X L H X L L L H
TestT1 &Tp L H H L X H L 1% L v a L
X H H X L L H H
X L L L L L L L
X L L H L L L H
X L H L L L H L
X L H H L. L H H
TestTg, T1 & Ty L H H H X o v L Y a L L
X H t H L H L H
X H H L L H H L
X H H H L H H H
L X X X L L L L
Test T3 H L Lot |og % X X C v by a
L X X L L L L L
L X X H L L L H
Test T & T3 H L L H H X X v hy L H L
H X X H L t H H
L X L X L L L L
L X H X L L L H
TestT{ & T3 H L H L u X L % L L H L
H X H X L L H H
L X L L L L L L
L X L H L L L H
L X H L L L H L
L X H H L L H H
TestTg, T1& T3 H L H H “ % L L L H L L
H X L H L H L H
H X H L L H H L
| H X H H L H H H
L L X X L L L L
TestTo& T L H X X L L L H
273 N L X X L L H L
H H X X L L H H
L L X L L Lt L [
L L X H L . L H
L H X L L L H L
N L H X H L L H H
Test T, To& T
st g, 12 3 H H L H H L X L L " L L
H L X H L H L H
H H X L L H H L
H H X H L H H H
L L L X L L L L
L L H X L L L H
L H L X L L H L
L H H X L L H H
TestT1, T & T3 H H H L H L % X L H L L
H L H X L H L H
HoooH L X L H H L
H H H X L H H H
L L L L i L L
L L L L L L H
L L H L L H L
L £ H L L H H
L H L L H L .
L H L L H L H
L H H L H H L
R 1N H H L H H H
TestTqg, Tq, T T
estTg, Ty, To& T3 H H H H H L L g L L L
H L L H L L H
H L H H i H L
H L H H L H H
H H L H H L L
H H L H H L H
H H H H H H L
H H H H H H H

L=LOW, H=HIGH, X = Don’t care

TABLE V 2225 21 16—20 12-15 0—11 BIT NO.
HIGH PERFORMANCE Am29803 Inst. Test Select* * Am29811
COMPUTER CONTROL Ins;_rgctnons Re?;:ter ::d Polarity Instructions | Numerical Field* | Field Description
e Test Jz Any 4 Parameters

UNIT ASSEMBLY DEFINITIONS ﬂ Number oS Digit (12 To Be

TO1 (1—14)in JMAP Bit) Octal Used

T2 Decimal, cJp Number

T02 and: PUSH

T12 CNTR JSRP

T3 for Test [e83Y)

T03 Select. JRP

T13 {Uncondi- RFCT

TO13 tional by RPCT

T23 default) INV CRTN

T023 for Test CJPP

T123 Polarity LDCT

T012 {noninverted LOQP

*One variable field T0123 by defauit) CONT
**Two variable field NOT JP
1-15

MICROPROGRAMMING A BIPOLAR MICROPROCESSOR MICROPROGRAMMING A BIPOLAR MICROPROCESSOR

; THIS IS AN AMDASM MICROPROGRAM ASSEMBLY EXAMPLE. ;
; AMDASM REQUIRES TWO PHASES; DEFINITION AND ASSEMBLY. :
; ; THE DEFAULT FOR DATA BUS READ-IN OF INSTRUCTION REGISTER IS DISABLE
; FOLLOWING IS THE DEFINITION PHASE AND THE DEFINITIONS ;

; REFER TO FIGURE 11, DB: DEF 42X, 1VB#1, 21X
; IN: EQU B#0

WORD 64 ; DEFINE A 64 BIT MICROINSTRUCTION .

; DEFINE THE AM29803 16--WAY BRANCH CONTROL UNIT
* ; INSTRUCTION MNEMONICS.

l; THE FIVE MAIN CCU FIELDS ARE AS FOLLOWS: ;
. NOT: DEF 38X, H#0, 22X

; M@ ~M11: A 12 BIT NUMERICAL FIELD USED TO T0: DEF 38X, H#1, 22X
; SUPPLY THE PIPELINE BRANCH ADDRESS ' T: DEF 38X, H#2, 22X
; OR COUNTER LOAD VALUE. T01: DEF 38X, H#3, 22X
; M12-M15: THE AM29811 INSTRUCTION T2: DEF 38X, H#4, 22X
; M16-M20: CONDITION CODE TEST SELECT & POLARITY CONTROL T02: DEF 38X, H#5, 22X
; M21 : INSTRUCTION REGISTER READ-IN Ti2: DEF 38X, H#6, 22X
; M22-M25: THE AM29803 INSTRUCTION T012: DEF 38X, H#7, 22X
R T3: DEF 38X, H#8, 22X
: T03: DEF 38X, H#9, 22X
; DEFINE THE DEFAULT PIPELINE BRANCH FIELD. T13: DEF 38X, H#A, 22X
; ITWILL FORCE THE MICROPROGRAM TO THE HIGHEST T013: DEF 38X, H#B, 22X
; MICROPROGRAM MEMORY LOCATION IF LEFT IN DEFAULT FORM. 123: DEF 38X, H#C, 22X
: T023: DEF 38X, H#D, 22X
NUMB: DEF 52X, 12V%Q#7777 T123: DEF 38X, H#E, 22X
; T0123: DEF 38X, H#F, 22X
; DEFINE THE CONDITIONAL TEST SELECT FIELD AND POLARITY CONTROL END ; END OF DEFINITION PHASE
; DEFAULTS ARE: NONINVERTED AND UNCONDITIONAL. ;

; TESTS ARE ACTIVE LOW! ; BEGIN ASSEMBLY PHASE

’

:fEST: DEF 43X, 4V%:D#0, 1VB#0, 16X :

EZNTR: EQU 15 ; COUNTER ZERO TEST SELECT
INV: EQU B#1 ;POLARITY CONTROL

v

; DEFINE THE AM29811 NEXT ADDRESS CONTROL UNIT 3
; INSTRUCTION MNEMONICS.

Jz: DEF 48X, H#0, 12X ; JUMP ZERO

CJS: DEF 48X, H#1, 12X ; CONDITIONAL JUMP SUBROUTINE
JMAP: DEF 48X, H#2, 12X ; JUMP MAP

CJP: DEF 48X, H#3, 12X ; CONDITIONAL JUMP PIPELINE

PUSH: DEF 48X, H#4, 12X ; PUSH/CONDITIONAL LOAD COUNTER

JSRP: DEF 48X, H#5, 12X ;COND JUMPSUBRGUTINE REGISTER/PIPELINE
CIv: DEF 48X, H#6, 12X ; CONDITIONAL JUMP VECTOR

JRP: DEF 48X, H#T, 12X ; CONDITIONAL JUMP REGISTER/PIPELINE
RFCT: DEF 48X, H#8, 12X ; REPEAT FILE LOOP ON COUNTER .NE. ZERO
RPCT DEF 48X, H#9, 12X ; REPEAT PIPELINE ON COUNTER .NE. ZERO
CRTN: DEF 48X, H#A, 12X ; CONDITIONAL RETURN

CJPP: DEF 48X, H#B, 12X ; CONDITIONAL JUMP PIPELINE & POP ﬂ
LDCT: DEF 48X, H#C, 12X ; LOAD COUNTER & CONTINUE |
LOOP: DEF 48X, H#D, 12X ; TEST END LOOP (CONDITIONAL LOGOP ON FILE)
CONT: DEF 48X, H#E, 12X ; CONTINUE

Jp: DEF 48X, H#F, 12X s JUMP PIPELINE

MICROPROGRAMMING A BIPOLAR MICROPROCESSOR

MICROPROGRAMMING A BIPOLAR MICROPROCESSOR

; EXAMPLE 1.

:

’

0001 ORG H#OF0

0005 ORG H#OF4
0006 ORTEST2:

0007 ORG H#OF8
0008 ORTEST3:

0003 ORG H#OFC

0011 END

00F0 XXXXXXXXXXXXXXXX
00F1T XXXXXXXXXXXXXXXX
00F2 XXXXXXXXXXXXXXXX
00F4 XXXXXXXXXXXXXXXX
00F8 XXXXXXXXXXXXXXXX
BOFC XXXXXXXXXXXXXXXX

0002 SWAP: NUMB 0006+« & TEST , & PCLC & T0123
0003 RFCT & TEST CNTR , & T0123
0004 CJV & TEST , & T0123

XXXXXXXXXXXXX XXX
XXXXXXXXXX XXX XXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX

; VISUALIZE A 16-BIT PROCESSOR IN A REAL-TIME ENVIRONMENT

; GATHERING AND MANIPULATING DATA. PART OF THIS DATA ARRIVES

; [N 8-BIT BYTES SO SWAPPING IS NECESSARY. ALSO, THERE ARE

; TWO CONTROL SIGNALS WHICH REQUIRE IMMEDIATE ATTENTION

; WHEN ACTIVE. ASSUME THAT THESE CONTROL SIGNALS ARE CONNECTED

; T0 T2 AND T3 OF THE AM29803 16-WAY BRANCH CONTROL UNIT, FOLLOWING
; ISTHE AMDASM OUTPUT FOR THIS EXAMPLE'S ASSEMBLY PHASE,

; WHICH INCLUDES THE SOURCE LISTING AND OUTPUT BIT PATTERN.

; IN THIS EXAMPLE, THE MICROPROGRAM STARTS AT LOCATION

; 0360 OCTAL. AS MENTIONED EARLIER, THE ALU PORTION OF

; THESE EXAMPLES ISNOT DEALT WITH.

TEST , & JPL & NUMB H#1F0 ;#2 HANDLER AT LOCATION 1F0

TEST , & JPL & NUMB H#2F0 ;#3 HANDLER AT LOCATION 2F0

XXXXXX1111X00000
XXXXXX1111X11110
XXXXXX1111X00000
XXXXXXXXXXX00000
XXXXXXXXXXX000600
XXXXXXXXXXX00000

0010 ORTEST23: TEST , & JPL & NUMB H#3F0 ;#2 AND#3 HANDLER AT LOC 3F0

0100111111111601
TOOOXXXXXXXXXXXX
OTTOXXXXXXXXXXXX
1111000111110000
1111001011110000
1111001111110000

; EXAMPLE 2.

; ALIGNMENT CAN BE REALIZED IN ONE MICROINSTRUCTION. ASSUME
; THAT F3 OF THE MOST SIGNIFICANT ALU SLICE IS CONNECTED TO

; TEST 13 OF THE CONDITION MULTIPLEXERS. NOTE THAT NEGATIVE

; NUMBERS CAN BE ALIGNED IN THE SAME MANNER BY SIMPLY

; OMITTING THE VARIABLE "INV”. ALSO, IF THE COUNTER IS CLEARED
; BEFORE STARTING ALIGNMENT, IT WILL CONTAIN THE NUMBER OF

; SHIFTS REQUIRED TO DO THE ALIGNMENT (OR THE COMPLIMENT

; IF USING AM25L5169 COUNTERS).

0001
0002
0003

ORG Q#0770
ALIGN:
END

NUMB 0770 & TEST 13, INV & RPCT

;(ALU TO SHIFT UP)

O1F8 XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXX11011

; EXAMPLE 3.

; ADIVISION ROUTINE. ASSUME F=0 OF THE ALU ISCONNECTED TO
; TEST-12 (AND F3 TO TEST—13 AS BEFORE), AND SIXTEEN
; DIVISION STEPS ARE REQUIRED. IF THE FINAL REMAINDER 1S NEGATIVE, IT MUST BE
; RESTORED BY ADDING IT TO THE DIVISOR. THE VECTOR INPUT IS SET UP

; FORTHE ERROR ROUTINE. NOTE USAGE OF THE AMBASM CONVENTION

; “$” TO DENOTE THE CURRENT PROGRAM COUNTER.

0001
0002
0003
0004
0005
0006
0007
0008

0200
0201
0202
0203
0204
0205

ORG Q#1000
DIVIDE:

TEST, & JMAP
TEST, & JMAP
END

XXXXXXXXXXXXXXXX
XXXXXXXXXXXXX XXX
XXXXXXXXXXXXXXXX
XXXXXAXXXXXXXXXX
AXKXXXXXXXXXXKXX
XXXXXXXXXXX XX XXX

LDCT & TEST, INV & NUMB D#14%=
TEST 12, INV & CJV

RPCT & TEST CNTR, & NUMB $
TEST 13, INV & NUMB $+2 & CJP

; (ALU OUTPUTS DIVISOR)
;IF=0: ERROR

;LoOP

;IF R<<0,CORRECT

JEXIT TO MAP
;ALU ADDS REMAINDER TO DIVISOR, EXIT MAP

XXXXXXXXXXXXXXXX
XXAXAXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXX
XXXXXXXXXXXXX XXX
XXXXXXXKXXXXXX XXX

XXXXXXXXXXX00001
XXXXXXXXXXX11001
XXXXXXXXXXX11110
XXXXXXXXXXXT11011
XXXXXXXXXXX00000
XXXXXXXXXXX00000

1001000111111000

1100111111110001
OTTIOXXXXXXXXXXXX
1001001000000010
0011001000000101
00TOXXXXXXXXXXXX
BOTOXXXXXXXXXXXX

MICROPROGRAMMING A BIPOLAR MICROPROCESSOR

There are, of course, different ways to define the assembly
mnemonics and the user is encouraged to try and find the
most suitable for him. The more sophisticated the definitions
are, the easier it is to write the assembly statements. The above
definitions and examples demonstrate how convenient it is to
use AMDASM to program the High Performance Computer
Control Unit. AMDASM is a microprogram assembler available
on CSC Timesharing.

CCU TIMING

The minimum clock cycle that can be used in a CCU design
is usually determined by the component delays along the
longest “pipeline register clock to logic to pipeline register
clock” path. At the bedinning of any given clock cycle, data
available at the output of microprogram memory, counter
status, and any other data and/or status fields, are latched
into their associated pipeline registers. At this point, all delay
paths begin. Visual inspection will not always point out the
longest signal delay path. The obviously long paths are a good
place to start, but each definable path should be calculated on
a component-by-component basis until the truely longest
logic signal path is found. Referring to Figure 11, an obviously
long path is from the counter pipeline register (U26); through
the Am2911 sequencers; to the pipeline register at the output
of microprogram memory. Example 1 in Figure 12 gives
representative propagation delay calculations for this path
in the CCU defined in Figure 11.

The propagation delay path shown as Example 2 in Figure 12
has a longer delay than that shown in Example 1. This fact
generally would not have been known without actually adding
together the propagation delays of the individual components
in that path.

The delay path calculated in Example 2 assumes that a signal
polarity change at the Am29811 TEST-input will not cause a
signal fluctuation at the MAP E and/or the PL E outputs. Since
the Am29811 uses a decoding matrix internally, we must
assume that a “‘glitch’” at the MAP E or PL E outputs is
possible. For purposes of discussion, assume that a change
at the Am29811’s TEST-input also caused the MAP E and/or
PL E outputs to “glitch”. This means that the D-source select
path must now be added to Example 2, and is shown as
Example 3 in Figure 12.

Needless to say, the design engineer should identify the longest
signal path within the CCU design by actual calculation. The
longest, worst case propagation delay path must be known
in order to set the minimum system clock cycle time. Once
this path is identified, then changes to increase speed can be
identified. For example, if the microprogram memory becomes
45ns, a 20ns improvement is realized.

FORMATTING IN MICROPROGRAM MEMORY

Many engineers designing a microprogrammed machine for the
first time find difficulty in determining an approach to the
microprogramming problem. At Advanced Micro Devices, we
have found the following approach to be the most useful for
engineers attempting their first microprogramming design job.
This approach involves initially assuming only one format for
the microprogram word will be used. That is, the machine
architecture should be determined as required for the per-
formance desired and the total word width of the micropro-
gram memory temporarily ignored. This can result in a fairly
wide microprogram word at the onset of the design. However,
by taking this approach, the design engineer does not become
immediately bogged down in making several trade-offs as to

1-20

the various formats useful for the microprogram words. If the
machine architecture is designed to achieve the performance
required and the microprogram word is expanded such that
bits are available to control the various portions of the machine
as required, then the initial design task becomes straight-
forward.

After the initial architecture has been laid out, the design
should proceed so that small groups of microinstructions are
written for the key machine instructions. Particular emphasis
should be placed on the machine instruction set which requires
the highest use in the firmware operation. For example, par-
ticular emphasis should be placed on the fetch routine since
it is used on every machine instruction cycle. Likewise, if the
machine will typically execute many register-to-register
arithmetic operations, the microprogram sequence used in
these instructions should be reviewed carefully. As small

EXAMPLE 1

Signal U26, U12, U13, U15, U6, Microprogram Memory,
and Pipeline is calculated as follows:

Component Path Propagation Delay
u26 CP-Q 12ns
u12 D-Y 12ns
u13 A/B-Y 6ns
u1s TEST-OUTPUT 55ns
us, U7, U8 Sg, Si-Y 40ns
Microprogram Memory A-D 65ns
Pipeline Ts 5ns

Total Propagation Delay: 195ns

EXAMPLE 2

Signal path U17, U14, U13, U15, U6, Microprogram Memory,
and U17.

Component Path Propagation Delay
u17 CcP-Q 17ns
u14 S-W/Y 21ns
u13 A/B-Y 6ns
U15 TEST-QUTPUT 55ns
U6, U7, Us Sg, S1-Y 40ns
Microprogram Memory A-D 65ns
u17 Ts bns

Total Propagation Delay: 209ns

EXAMPLE 3

The same path as defined in Example 2 above but assuming
that MAP E and/or PL E fluctuate when the polarity of U15%
TEST-input changes.

Component Path Propagation Delay
u17 CP-Q 17ns
Y14 S-W/Y 21ns
u13 A/B-Y 6ns
uUis TEST-OUTPUT 55ns
uie A/B-Y 12ns
u19, U20, U21 OE 19ns
us, U7, U8 D-Y 20ns
Microprogram Memory A-D 65ns
ut7 Ts Bns

Total Propagation Delay: 220ns

Figure 12. Speed Calculation Examples

MICROPROGRAMMING A BIPOLAR MICROPROCESSOR

sequences of firmware are written, it will become apparent
that some fields of the microprogram might be shared in the
memory. For example, perhaps the interrupt control micro-
program bits and the A source operand microprogram bits
never occur in the same microinstruction. Thus, if four bits
are used for interrupt control and four'bits are used for the
“A" source operand select, then these four bits might use
the same four-bit field in the memory. This would save a
four-bit field throughout the entire microprogram memory
addressing space. However, it will be necessary to determine
which field is present in the pipeline register word. Thus,
one bit may be dedicated in the entire microprogram word
field to distinguish between format number 1 and format
number 2. When this bit is a zero, the machine recognizes
format 1 and applies these four bits to the source operand
control. When this bit is a logic 1, the machine recognizes
that format number 2 is in the pipeline register and applies
this field to the interrupt control.

From this discussion, it should be apparent that four different
formats might be utilized by the machine and a two-bit field
used to identify which of the formats is in the pipeline register.
There are designs where part of the pipeline contains muttiple
registers for use by the same microinstruction field. In this
case, the two bits determining the microinstruction format
can be decoded by a Two-Line to Four-Line decoder (such as
the Am74LS139). The output from the decoder can enable a
register with a clock enable function as on the Am25LS07
{four-bit), Am25LS08 (six-bit), or Am25L8377 (eight-bit) so
that the microprogram memory word is loaded into the proper
register for use by the machine.

The primary advantage of formatting the microprogram word
is to save bits in width for the microprogram memory. Occa-
sionally, as the formatting becomes more complex, it will be
found that two fields are required simultaneously. This can
result in an extra microinstruction being required to be able to
perform all of the functions required by the microprogram
control. Normally, anywhere from two to eight different
formats can be found useful in the microprogramming of
different machines.

For the design engineer doing his first microprogramming job,
the emphasis should be on layout of the architecture of the
machine to meet the required specification. Should the design
accidentally use too many bits in microword width, it would
be unfortunate but not catastrophic. The machine would still
perform properly and meet specification and, in many cases,
only one or two extra integrated circuits would have been
used. Based on the cost of Field Programmable Read Only
Memories, this cost is not unacceptable. Also, it is possible
that such an approach may considerably reduce the overall
design time of the machine. As the designer gains experience,

1-21

he will become more proficient in formatting microprogram
words and will soon find he can generate microprogram
control architecture with reasonable speed.

TYPICAL Am2900 MICROPROCESSOR

In order to provide an overall view of a typical Am2900
Bipolar Microprocessor, the block diagram of Figure 13 is
presented. Here, the computer contro! unit {CCU) as described
in this Application Note is depicted. In addition, the typical
connection scheme for the Am2901 Bipolar Microprocessor
slices is shown. The four Am2901 devices in the block diagram
form a typica! 16-bit architecture. Also shown in Figure 13 is
the general connection for the Am2914 Priority Interrupt
Controller and the Am2930 Program Control Unit. The
Am2814 is currently available while the Am2930 is scheduled
for introduction in the first quarter of 1977.

The block diagram also shows the Am2917 as the bus interface
unit. Note that the Am2917 can interface directly with a
data bus and the drive levels and receive levels are such that
the instruction register can be built using standard Low-Power
Schottky devices. This is possible because the receiver threshold
on the Am2917 is designed identically to the thresholds on
standard power Schottky and the Low-Power Schottky devices.

SUMMARY

The Am2909 and Am2911 provide a powerful sofution to the
microprogram memory sequence control problem. These
devices are particularly well suited for high performance com-
puter control units are structured state machine designs using
overlap fetch of the next microinstruction. The Am29811
Next Address Control Unit provides the most powerful instruc-
tion set currently available for next microinstruction control.
The Am29811 is available in the 16-pin package while the
Am2911 is available in the space-saving, 20-pin package. Three
Am2911's and one Am29811 provide for addressability of 4K
words of microprogram memory utilizing minimum board area.

The Am2909 and Am29803 combination allow for 16-way
branching on a single microinstruction. This ‘can improve
throughput by a factor of four as well as saving many words
of microprogram memory. In addition, the Advanced Micro
Devices’ Microprogram Assembler {AMDASM) is a highly
powerful tool for use in conjunction with the instruction set
of the Am29811.

All of the devices described in the application note are com-
petively priced, currently available and multiple sourced. The
devices are also available with specifications guaranteed over
the full military temperature range.

SECTION 2
MICROPROGRAM CONTROL CIRCUITS

Am2909 2-2
Am2911 L .. 2-2
Am29803 2-11
Am29811 .. . 2-16

2-1

Am2909 - Am2911

Microprogram Sequencers

DISTINCTIVE CHARACTERISTICS

® 4-bit slice cascadable to any number of microwords

Internal address register

Branch input for N-way branches

Cascadable 4-bit microprogram counter

4 x 4 file with stack pointer and push pop control for
nesting microsubroutines,

Zero input for returning to the zero microcode word

Individual OR input for each bit for branching to higher
microinstructions (Am2909 only).

® Three-state outputs

® All internal registers change state on the LOW-to-HIGH

transition of the clock
® Am2909 in 28-pin package
& Am2911 in 20-pin package

GENERAL DESCRIPTION

The Am2909 is a four-bit wide address controlier intended
for sequencing through a series of microinstructions con-
tained in a ROM or PROM. Two Am2909’s may be inter-
connected to generate an eight-bit address (256 words),
and three may be used to generate a twelve-bit address
(4K words).

The Am2909 can select an address from any of four
sources. They are: 1) a set of external direct inputs (D);
2) external data from the R inputs, stored in an internal
register; 3) a four-word deep push/pop stack; or 4} a pro-
gram counter register (which usually contains the last
address plus one). The push/pop stack includes certain
control lines so that it can efficiently execute nested sub-
routine linkages. Each of .the four outputs can be OR’‘ed
with an external input for conditional skip or branch
instructions, and a separate line forces the outputs to all
zeroes. The outputs are three-state,

The Am2911 is an identical circuit to the Am2909, except
the four OR inputs are removed and the D and R inputs
are tied together. The Am2911 is in a 20-pin, 0.3" centers
package.

TABLE OF CONTENTS

MICROPROGRAM SEQUENCER
BLOCK DIAGRAM

Block Diagram 22
Pin Deﬂfntion.s 2.5 Fimmsony 1 sussor. Fre enmsLe
Connection Diagram 2-5 r-**%d [‘<
Physical Dimensions. 23 e |
FunctionTables 26 >t secisten STACK POMTER
. i
Subroutining 2-6 | T
SCreening. . . .o v v v 2-8 a}gowzcﬁreo
o Amsat
OrderCodes. 2-8 : o ¢ axarie
DC Characteristics. 2-9 |
. i
AC Characteristics. 2-10 oS s R o
° 1 {
A
S >
. MuLTIPLEXER 1 colen et
o % % x x
Fﬂeoeomv‘] 0 L 2 2
OR;
T
.
TNCREMENTER “|
CONTROL
G
Yo Yy Y2 Y3 Cnl Chasg
2-2

Am2909/11

ARCHITECTURE OF THE Am2909/Am2911

The Am2909/Am2911 are bipolar microprogram sequencers
intended for use in high-speed microprocessor applications.
The device is a cascadable 4-bit slice such that two devices
allow addressing of up to 256-words of microprogram and
three devices allow addressing of up to 4K words of micro-
program. A detailed logic diagram is shown in Figure 2.

The device contains a four-input multiplexer that is used to
select either the address register, direct inputs, microprogram
counter, or file as the source of the next microinstruction ad-
dress. This multiplexer is controlled by the Sg and Sq inputs.

The address register consists of four D-type, edge triggered
flip-flops with a common clock enable. When the address
register enable is LOW, new data is entered into the register
on the clock LOW-to-HIGH transition. The address register
is available at the muitiplexer as a source for the next micro-
instruction address. The direct input is a four-bit field of
inputs to the multiplexer and can be selected as the next
microinstruction address. On the Am2911, the direct inputs
are also used as inputs to the register. This allows an N-way
branch where N is any word in the microcode.

The Am2909/Am2911 contains a microprogram counter
(uPC) that is composed of a 4-bit incrementer followed by a
4-bit register. The incrementer has carry-in {Cp} and carry-out
{Ch+4) such that cascading to larger word lengths is straight-
forward. The uPC can be used in either of two ways. When the
least significant carry-in to the incrementer is HIGH, the
microprogram register is loaded on the next clock cycle with
the current Y output word plus one (Y+1—=>uPC.) Thus sequen-
tial microinstructions can be executed. If this least significant
Cn is LOW, the incrementer passes the Y output word unmod-
ified and the microprogram register is loaded with the same
Y word on the next clock cycle (Y->uPC). Thus, the same
microinstruction can be executed any number of times by
using the least significant Cy, as the control.

The last source available at the multiplexer input is the 4 x 4
file (stack). The file is used to provide return address linkage

when executing microsubroutines. The file contains a built-in
stack pointer {SP) which always points to the last file word
written. This allows stack reference operations {looping) to be
performed without a push or pop.

The stack pointer operates as an up/down counter with
separate push/pop and file enable inputs. When the file enable
input is LOW and the push/pop input is HIGH, the PUSH
operation is enabled. This causes the stack pointer to
increment and the file to be written with the required return
linkage — the next microinstruction address following the sub-
routine jump which initiated the PUSH.

If the file enable input is LOW and the push/pop control is
LOW, a POP operation occurs. This implies the usage of the
return linkage during this cycle and thus a return from sub-
routine. The next LOW-to-HIGH clock transition causes the
stack pointer to decrement. If the file enable is HIGH,
no action is taken by the stack pointer regardiess of any
other input.

The stack pointer linkage is such that any combination of
pushes, pops or stack references can be achieved. One micro-
instruction subroutines can be performed. Since the stack is
4 words deep, up to four microsubroutines can be nested.

The ZERO input is used to force the four outputs to the
binary zero state. When the ZERO input is LOW, all Y
outputs are LOW regardless of any other inputs (except OE).
Each Y output bit also has a separate OR input such that a
conditional logic one can be forced at each Y output. This
allows jumping to different microinstructions on program-
med conditions.

The Am2909/Am2911 feature three-state Y outputs. These
can be particularly useful in military designs requiring external
Ground Support Equipment (GSE) to provide automatic
checkout of the microprocessor. The internal control can
be placed in the high-impedance state, and preprogrammed
sequences of microinstructions can be executed via external
access to the control ROM/PROM.

20-Pin Side Brazed

20 E ¥
310
275

1 10 i

[950 !
i
| ;oo
Tl ey i MIN
200 i
MAX.
PO S
775 ‘ ‘ [008
N,
v | TR |
2 | 0 gz 2]

2% 5]

210 15 MAX.
wax |

iz

E

090 a { —offee
,_{ !—— L 590 i
= Te o2 e 230w

PHYSICAL DIMENSIONS

20-Pin Molded

£ T H

. o)]

28-Pin Flat Package

e e

G ="
1 28 T

=
I

|
| IUP— Y R
1150
] P S—
RS V—" R
[E Y
a7s | oo

TYP. -

ull
g -

Figure 1.

Am2909/11

DowN.

LE (STACK POINTER)

a, o

9

299

I
|
!
oxsmaTAIX
OF EiOnY GeLLs

03

.
Ll

1

PUSH/POP

L=POP
H=PUSH

FILE
ENABLE

ENABLE

L=

%
o
02
O3

READWRITE

1061C

oy

o

T vaLwansvont S f—< I

57 T

—

LY

-
E
N
[a}
r
{
a
s
o
1]
|
.
E
closd
[ER RN 1
-
E
(=]
-
E
5 5o®
(o)
g
3

REGISTER
ENABLE

I_T

2 5]
u
N

Y2

Y1

Yo

Note: R; and D; connected together on Am2911 and OR; removed.

Figure 2. Microprogram Sequencer Block Diagram.

Am2909/11

DEFINITION OF TERMS

A set of symbols is used in this data sheet to represent
various internal and external registers and signals used with
the Am2909. Since its principle application is as a controller
for a microprogram store, it is necessary to define some signals
associated with the microcode itself. Figure 3 illustrates the
basic interconnection of Am2909, memory, and microinstruc-
tion register. The definitions here apply to this architecture.

Inputs to Am2909/ Am2911

$1, 89 Control lines for address source selection

FE, PUP Control lines for push/pop stack

RE Enable line for internal address register

OR; Logic OR inputs on each address output line

ZERO Logic AND input on the output lines

OE QOutput Enable. When OF is HIGH, the Y out-
puts are OFF (high impedance)

Cn Carry-in to the incrementer

Rj Inputs to the internal address register

D; Direct inputs to the multiplexer

CcP Clock input to the AR and uPC register and

Push-Pop stack

Outputs from the Am2909/ Am2911

Yi Address outputs from Am2909. (Address inputs
to control memory.)

Ch+4 Carry out from the incrementer

Internal Signals

uPC Contents of the microprogram counter

REG Contents of the register

STKO0-STK3 Contents of the push/pop stack. By definition,
the word in the four-by-four file, addressed by
the stack pointer is STKQ. Conceptually data
is pushed into the stack at STKO; a subsequent
push moves STKO to STK1; a pop implies
STK3 - STK2 - STK1 = STKO. Physically,
only the stack pointer changes when a push or
pop is performed. The data does not move. [/O
occurs at STKO.

sP Contents of the stack pointer

External to the Am2909/Am2911

A Address to the control memory
IH{A) Instruction in control memory at address A
UWR Contents of the microword register (at output

of control memory). The microword register
contains the instruction currently being exe-
cuted.

Th Time period (cycle} n

CLOCK
o

R
D
Am2808

‘_‘—‘J‘ N 80, $4. FE, PUP, RE
Vv Y

U

A

CONTROL MEMORY
{ROM, PROM or RAM)

HA)

SEQUENCE LOGIC MICROWORD
CONTROL CONTROL REGISTER
FIELD FIELDS {uWR)

e
-

]

TO Am2901

> TO OTHER DEVICES

CONNECTION DIAGRAMS
Top Views

Voo CP PUP FEChug € OF Y3 Y, Yq Yq S; Sg ZERO

OO000O00000n0rrn

28 27 2% 25 24 23 22 2 18 17

5

) Am2809

1 2 3 4 5 6 7 8 8 0 11 12 13 14

guuuuuuubuy

RE Ry R, Ry Ry ORy D3 OR, D, ORy Dy ORg Dy GND

PUP FE Cnyg C, OE Yz Yo Yy Yo S

goonnnonflinn

.20 19 18 17 16 1B 14 13 12 1

) Am2811

* 3 4 5 6 7 8 8 10
oy
CP Voo RE Dz Dy Dy Do GND ZERD Sp

Note: Pin 1 is marked for orientation.

Figure 3. Microprogram Sequencer Control.

Figure 4.

OPERATION OF THE Am2909/Am2911

Figure 5 lists the select codes for the multiplexer. The two
bits applied from the microword register (and additional com-
binational logic for branching) determine which data source
contains the address for the next microinstruction. The
contents of the selected source will appear on the Y outputs.
Figure 5 also shows the truth table for the output control and

Am2909/11

for the control of the push/pop stack. Figure 6 shows in detail
the effect of Sg, $3, FE and PUP on the Am2909. These four
signals define what address appears on the Y outputs and what
the state of all the internal registers will be following the clock
LOW-to-HIGH edge. In this illustration, the microprogram
counter is assumed to contain initially some word J, the ad-
dress register some word K, and the four words in the push/
pop stack contain Ry through Rg.

Address Selection Output Control
OCTAL | $; S, | SOURCE FOR Y OUTPUTS |SYMBOL OR; ZERO OE Y
[¢] L L Microprogram Counter uPC X X H z
1 L H Register REG X L L L
2 H L Push-Pop stack STKO H H L H
3 H H Direct inputs D; L H L Source selected by Sg S4
2 = High Impedance
Synchronous Stack Control
FE PUP PUSH-POP STACK CHANGE
X No change
L H fncrement stack pointer, then
H = High push current PC onto STKO
L= Low L L Pop stack {decrement stack pointer)
X = Don’t Care

Figure 5.
CYCLE | S, Sq, FE, PUP uPC | REG | STKO | STK1|STK2 | STK3 | Your COMMENT PRlﬁg:EPLE
N 0000 J K Ra Rb Re Rd J P End
N+1 - J1| K | Rb | Rc | Rd | Ra | — | PopStack Loop
N 0001 J K Ra Rb Rc Rd J Set-up
N+1 —~ 1| K J | Ra | Ro | Re | — |PushwpC Loop
N 001X J K Ra Rb Rc Rd J Conti .
N-+1 _ J+1 K Ra Rb Re Rd - ontinue Continue
N 0100 J K Ra Rb | Rc Rd K | Pop Stack; End
N+1 - K+1 K Rb Rc Rd Ra — Use AR for Address Loop
N 0101 J K Ra Rb Rc Rd K Push uPC;
N-+1 - K+1 K J Ra Rb Re - Jump to Address in AR ISR AR
N 011X J K Ra Rb R Rd K -
N+1 _ K1 K Ra Rb Rz Rd h Jump to Address’in AR JMP AR
N 1000 J K Ra Rb Rc Rd Ra Jump to Address in STKO; RTS
N+1 - Ra+1 K Rb Rc Rd Ra — Pop Stack
N 17001 J K Ra Rb Re Rd Ra Jump to Address in STKO;
N+1 — Ra+1 K J Ra Rb Rc - Push uPC
N 101X J K Ra Rb Rc Rd Ra R Stack Ref
N1 - Rat1 K Ra Rb Re Rd - Jump to Address in STKO (Loop)
N 1100 J K Ra Rb Re Rd D Pop Stack; End
N+1 - D+1 K Rb Rc Rd Ra — Jump to Address on D Loop
N 1101 J K Ra Rb Re Rd D Jump to Address on D;
N+1 - D1 | K J | Ra | Rb | Re | — | PushuPC JSR D
N 111X J K Ra Rb R Rd
N _ ol K | R e | ae | RS | P | Jump to Address on D JMP D

X = Don‘tcare, 0= LOW, 1 = HIGH, Assume Cp = HIGH
Note: STKO is the location addressed by the stack pointer.

Figure 6. Output and Internal Next-Cycle Register States for Am2909/Am2911.

2-6

Am2909/11

Figure 7 illustrates the execution of a subroutine using the
Am?2909. The configuration of Figure 3 is assumed. The
instruction heing executed at any given time is the one con-
tained in the microword register (UWR). The contents of the
UWR also controls (indirectly, perhaps) the four signals Sg, Sq,
ﬁ, and PUP. The starting address of the subroutine is applied
to the D inputs of the Am2909 at the appropriate time.

In the columns on the left is the sequence of microinstructions
to be executed. At address J+2, the sequence control portion
of the microinstruction contains the comand “Jump to sub-

CONTROL MEMORY

Microprogram

Execute Cycle

To

Ty

routine at A”. At the time To, this instruction is in the yWR,
and the Am29809 inputs are set-up to execute the jump and
save the return address. The subroutine address A is applied to
the D inputs from the uWR and appears on the Y outputs. The
first instruction of the subroutine, 1{A), is accessed and is at
the inputs of the uWR. On the next clock transition, 1{A) is
loaded into the uWR for execution, and the return address
J+3 is pushed onto the stack. The return instruction is exe-
cuted at Tg. Figure 8 is a similar timing chart showing one
subroutine iinking to a second, the latter consisting of only
one microinstruction.

T2 T3 Ts Ts Te T7 Tg To

Micrapragram

Cycle Sequencer .
Address Instruction Signals
J-1 - Am2909 | 81,50 | O 0 3 0 0 2 0 0
To J — Inputs FE H H L H H L H H
T J41 _ {from PUP X X H X X L X X
T, 2 ISR A HWR) D X X A X X X X X
Ts 33 -
T J+4 - uPC J+1 J+2 J+3 A+1 A+2 A+3 J+4 J+5
- - STKO - - - J+3 J+3 J+3 - —
S I - 1 e B e e A
- - nes sTK2 | — - - - - - - ~
- - STK3 | - - - - - - - -
Ts A 1A) AmM2909 , N .
T, At - Output Y J+1 J+2 A A+l A+2 J+3 J+4 J+5
T A2 e FOM (v} | 1et) |JSRA | 1A | 1(A+1)| RTS | 1(J43) | 110+4) | 1(+5)
- - Qutput
- - Contents
- - of UWR
- - (Instruction] uWR Hd) I(J+1) | SR A {A) | H{A+1)| RTS H+3) | {4
_ - being
- _ executed)
Figure 7. Subroutine Execution. Cpn = HIGH
CONTROL MEMORY
Execute Cycle Ty Ty T T3 T4 Ts Ts T Tg Ty

Cycle Sequencer B
Address instruction Signais
J—1 - Am?290¢ | S1.So 0 0 3 0 0 3 2 0 2 0
To J - Inputs FE H H L H H L L H i H
T, 41 B {from PUP X X H X X H L X L X
T 42 ISR A LWR) D X X A X X B X X X X
Ty J+3 -
- - ubPC J+1 J+2 J+3 A+ A+2 A+3 B+1 A+4 A+5 J+4
- - STKO — - J+3 J+3 J+3 A+3 J+3 343
. _ I_j!}ntgrtnmarl STK1 _ . _ _ _ J+3 . -
_) egisters | oo 7) B 7 B] _) R
T3 A - STK3 - - — - - - — — - -
Ta A+1 -
iE A2 JSRE AM2909 4yl g L e oA | oast | as2 | o8 | as3 | Asa | ma | s
Ty A+3 — Qutput
Ts At+d RTS ROM
- —) HJ+1) | SR A HA)Y | H{A+1)] JSBB | RTS i(A+3)| RTS HI+3) | 1(H+4)
Output
B N Contents
- - of uWR
Ts B RTS {Instruction| uWR 1{J) I(J+1) | JSR A H{A) | 1{A+1} | JSRB | RTS |I(A+3)| RTS HJ+3)
R - being
_ . executed)
Figure 8. Two Nested Subroutines. Routine B is Oniy One Instruction. Cn = HIGH

2

-7

Am2909/11
MAXIMUM RATINGS (Above which the useful life may be impaired)
Storage Temperature —65°C to +150°C
Temperature (Ambient) Under Bias —~55°C to +125°C
Supply Voltage to Ground Potential -05Vto+7.0V
DC Voltage Applied to Outputs for HIGH Output State —0.5 V to +Ve max.
DC Input Voltage —-05Vto+7.0V
DC QOutput Current, Into Outputs 30 mA

DC Input Current

—30 mA to +5.0 mA

OPERATING RANGE
P/N Ambient Temperature

Vee

Am2909/2911DC, PC

0°C to +70°C

4.75V t0 5.25V

Am2909/2911DM, FM

—55°C to +125°C

450V to 5.50V

STANDARD SCREENING
(Conforms to MIL-STD-883 for Class C Parts)
MIL-STD-883 Level
Step Method Conditions Am2909/Am2911PC, DC | Am2909/Am2911DM, FM
Pre-Seal Visual Inspection 2010 B 100% 100%
24-hour
Stabilization Bake 1008 C 450°c 100% 100%
o o
Temperature Cycle 1010 ¢ 85 Cro150°C 100% 100%
10 cycles
Centrifuge 2001 B 10,000 G 100% * 100%
Fine Leak 1014 A 5x 10-8 atm-cc/cm3 100% * 100%
Gross Leak 1014 C2 Fluorocarbon 100% 100%
Electrical Test See below for .
Subgroups 1 and 7 5004 definitions of subgroups 100% 100%
insert Additional Screening here for Class B Parts
Group A Sample Tests
Subgroup 1 LTPD =5 LTPD =5
Subgroup 2 LTPD =7 LTPD =7
Subgroup 3 See below for LTPD =7 LTPD=7
Subgroup 7 5005 definitions of subgroups LTPD =7 LTPD =7
Subgroup 8 LTPD=7 LTPD =7
Subgroup 9 LTPD =7 LTPD =7
*Not applicable for
imgg?‘f;g or ADDITIONAL SCREENING FOR CLASS B PARTS
m .
MiL-STD-883 Level
Ste, Conditi
i Method onditions I Am2909/Am2911DMB, FMB
Burn-In 1015 D eotB S 100%
Electrical Test 5004
Subgroup 1 100%
Subgroup 2 100%
Subgroup 3 100%
Subgroup 7 100%
Subgroup 9 100%
Return to Group A Tests in Standard Screening
ORDERING INFORMATION GROUP A SUBGROUPS
(as defined in MIL-STD-883, method 5005}
Am2909 Am2911 Subgroup Parameter Temperature
Package Temperature Order Order 1 Y 2%°C
Type Range Number Number 2 DC Maximum rated temperature
5 5 3 DC Minimum rated temperature
Molded DIP 0Cto+70C AM2909PC AM2911PC 7 Function 25°C
. O O
Hermetic DIP 0 C(? to +70 CO AM2909DC AM2911DC 8 Function Maximum and minimum rated
Hermetic DIP —55 Cto+125°C AM2909DM AM2911DM temperature
Hermetic Flat Pak —55°C to +125°C Am2909FM - 9 Switching 25°C
Dice 0°C to +70°C Am2909XC — 10 Switching Maximum Rated Temeperature
11 Switching Minimum Rated Temperature

2-8

Am2909/11

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (Unless Otherwise Noted)

Typ.
Parameters Description Test Conditions (Note 1) Min. (Note 2) Max. Units
v Vee = MIN,, MiIL loq = —1.0mA 24
H Volts
oH Output HIGH Voltage VIN=ViHorViL | comL | oy - —26mA | 24
loL = 4.0mA 0.4
Vee = MIN, lgp = 8.0mA 0.45
Vv Qutput LOW Voltage Volts
oL P ¢ VIN=ViHOr Vil | 1gL =12mA 06
(Note 5) .
Vik Input HIGH Level Guaranteed input logical HIGH 00 Volts
volitage for all inputs
i i MiL 0.7
Vit Input LOW Level Guaranteed input togical LOW Volts
- voltage for all inputs coM'L 0.8
A\ Input Clamp Voltage Vee = MIN, Iy = —18mA —-1.5 Volts
Cn —1.08
_ Ve = MAX,, — mA
e Input LOW Current ViN = 0.4V Push/Pop, OF ~0.72
Others {(Note 6) -0.36
B Cn 40
Vg = MAX,,
HH Input HIGH Current ViN =27V Push/Pop 40 MA
Others (Note 6) 20
Vee = MAX,, Cn. Push/Pop 0.2 A
! Input HIGH Current m
' ’ VIN=T7.0V Others (Note 6) 0.1
los Qutput Short Circuit Current Vee = MAX, _40 ~100 mA
{Note 3)
fce Power Supply Current Vee = MAX. (Note 4) 80 130 mA
lozL Ve = MAX., Vout =04V 20
0 F Current o A
107t utput OFF Curren BE=27v VouT =27V 20
nNotes: 1. For conditions shown as MIN, or MAX., use the appropriate value specified under Electrical Characteristics for the applicabie device type.
2. Typical timits are at Ve = 5.0V, 25°¢C ambient and maximum loading.
3. Not more than one putput shoutd be shorted at a time. Duration of the short circuit test shouid not exceed one second.
4. Apply GND to Cp, Rg, Rq, Ry, Rz, ORp, OR4, ORy, ORg, Dy, Dq, Dy, and Dy. Other inputs open, All outputs open. Measured after a
L OW-to-HIGH clock transition.
5. The 12mA guarantee applies only to Yg, Y4, Yo and Y3.

6. For the Am2911, D; and R are internally connected. Loading is doubied (to same values as Push/Pop).

2-9

SWITCHING CHARACTERISTICS OVER OPERATING RANGE
All parametegs are guaroanteed worst case over the operating voltage and temperature range for the device type.
{Grade C=0°C to +70°C, 4.75V to 5.25V; Grade M = —55°C to +125°C, 4.5V to 5.5V)

TABLE | ,

MINIMUM CLOCK REQUIREMENTS
Minimum Clock LOW Time 50
Minimum Clock HIGH Time 30

Am2909/11

TABLE II TABLE 1l TABLE IV
MAXIMUM COMBINATORIAL MAXIMUM DELAYS SET-UP AND HOLD TIME
PROPAGATION DELAYS FROM CLOCK TO OUTPUTS REQUIREMENTS
OUTPUTS
v, Cnea FUNCTIONAL |GRADE | CLOCK | CLOCK EXTERNAL ‘ .
INPUTS PATH TOY; |TOCp+a INPUTS s h
5 25 _ Rogister c 48 58 RE 20 5.0
(S1Sg = LH) M 55 5 R; 15 2.0
ZERO 35 45
c 48 58 PUSH/POP 20 5.0
u Program Counter —
OR; 20 32 {8180 = LL) " 55 o5 FE 20 Y
Cn 15 0
S0. S1 40 50 File c ° 80 D; 35 0
_ 1
{S15g = HL) M 80 90
D; 20 32 OR; 20 0
RL =20k2 Cp =1BpF So. $1 50 0
Cn - 18 ZERO 45 0
T towl
(TABLE 1) }&(TABLE \)_“1
xk\\\\\\\ \\x’\ v
cp _ CLOCK H TO L OCCURSy \ __ g3V
ANYTIME HERE
AANNNNNAN ov
| 15 ty
| {TABLE tV) I (TABLE IV}
3.0v
Eier o W W .
(EXCEPT OE}
ov
| INPUTSTO Y 0rCpyyg
-__CLOCK TO Y, or Cn+4 . (TABLE 1]
(TABLE 11} VOH
vcour 0‘0‘0‘0’0’0‘%“0‘0’0.0.0’0‘0’0’0‘060 1av
QROOORCHHHKAXXXKKD

2-10

Figure 12. Switching Waveforms. See Tables for Specific Values.

B

Am29803

16-Way Branch Control Unit

DISTINCTIVE CHARACTERISTICS

® 16 separate instructions —2, 4, 8, or 18-way branch in
one microprogram execution cycle

® Four individual test inputs

® Four individual outputs for driving the four OR inputs on
the Am2209 Microprogram Sequencer

® Provides maximum branch capability in a microprogram
control unit using the Am2909

® Advanced Low-Power Schottky processing

@ 100% reliability assurance testing in compliance with MiL-
STD-883

FUNCTIONAL DESCRIPTION

The Am29803 is a Low-Power Schottky processed device that
provides 16-way branch control when used in conjunction
with the Am2909 Microprogram Sequencer.

The device features 16 instructions that provide all combina-
tions of simultaneous testing of four different inputs. The
device has four outputs that are used to drive the four OR
inputs of the Am2909 Microprogram Sequencer.

The “zero” instruction inhibits the testing of any of the four
test (T) inputs. The remaining 15 instructions are used fo test
combinations of 1, 2, 3, or 4 of the T inputs simultaneously. If
one T input is being tested, the Am29803 will select one of
two possible addresses. If two T inputs are being tested, the
device will select one of four possibie addresses. If three T
inputs are being tested, the device will select one of eight
possible addresses. If all four T inputs are being tested, the
device will select one of sixteen addresses as the field used to
drive the OR inputs of the Am2909.

LOGIC DIAGRAM

o
OF,

DECODE
MATRIX

Ty __4>0h_ T

?

CONNECTION DIAGRAM
Top View

Vee 13 OE; OF; ORz ORy ORy ORy

Onoaamnnmnn

| 15 14 13 12 31 10 2

® .

1 2 3 4 5 B 7 8

oo ouridd
Iy 4 lg Tz Tg Ty T, GND-

Note: Pin 1 is marked for orientation.

LOGIC SYMBOL

oy o 13

T — 1y

21
0F, fo— 14
3I—Aly

ORy ORy OR2 QRg

BN

8 01T 12

Ve = Pin 16
GND =Pin 8

Am29803

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

Voe = 5.0V 5% MIN. =4.76V MAX. = 5.25V
Vee =5.0V £10% MIN, =450V MAX. =550V

COM'L Tp =0°Cto+70°C
MiL Tp =-55"Cto+125°C

DC CHARACTERISTICS OVER OPERATING RANGE

Typ.
Parameters Description Test Conditions (Note 1) Min. (Note 2) Max. Units
V, = MIN., 1 =-2.0mA
VOH Output HIGH Voltage cC OH 2.4 Volts
ViN=ViHor VL
Vge = MIN. I = 8.0mA 0.4 vor
VoL Qutput 1.OW Voltage Vin = Vi or V olts
INTYIHOTHIL 0 = 16ma 0.45
Guaranteed input logical HIGH
ViH Input HIGH Level voltage for all inputs 2.0 Volts
Guaranteed input logicat LOW MiIL 0.7
Vi input LOW Level voltage for all inputs COML 0.8 Volts
V) Input Clamp Voltage Vee =MIN, Iy = —18mA —15 Volits
L tnput LOW Current Vee = MAX,, ViNy =04V —-0.1 mA
1|H Input HIGH Current Vee = MAX., Viy = 2.7V 10 uA
Iy {nput HIGH Current Ve = MAX, ViN=7.0V 1.0 mA
Off-State (High-impedance) = MA Vg =04V —40
o Vee X. uA
Qutput Current Vg =24V 40
Isc Output Short Circuit Current Vee = MAX. _12 _85 mA
(Note 3)
Power Supply Current -
1 = MAX. 56 80 A
ce (Note 4) vee m.

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical limits are at Voo = 5.0V, 25° ambient and maximum loading.

3, Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

4, Inputs grounded; outputs open.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature —65°C to +150°C
Temperature {Ambient) Under Bias —55°C to +125°C
Supply Voltage to Ground Potential Continuous -~0.5V to+7.0V
DC Voltage Applied to Outputs for High Output State —0.5V to +V¢c max.
DC Input Voltage —0.5Vt0 5.5V

30mA

DC OQutput Current, Into Outputs

DC Input Current

—30mA to +5.0mA

2-12

SWITCHING CHARA

CTERISTICS

(Ta =+25°C, Ve = 5.0V)

Am29803

Parameters Description Test Conditions Min. Typ. Max. Units
tPLH
ooy lj to OR; 45 60 ns
tpLH .) C =15pF
T; to OR L b
Ty i i R =20k 45 60 ns
tzH —
oy OE; to OR; 25 30 ns
tHz — Ci =5.0pF
0y Ej to OR; R =2.0ka 25 30 ns
SWITCHING CHARACTERISTICS COM'L
OVER OPERATING RANGE it
Ta =0°C to +70°C Ta = —55°C to +125°C
Vee =5.0V 15% Vee =5.0V £10%
Parameters Description Test Conditions Min. Max. Min. Max. Units
LA
r—y i;to OR; 70 80 ns
tPLH
T; to OR;
UL i i CL = 15pF 70 80 ns
tzH 5E 100 R =2.0kQ
i to OR;
- i i 35 40 ns
tHz —
Lz OE; to OR; 35 40 ns
DEFINITION OF FUNCTIONAL TERMS GUARANTEED LOADING RULES
fg. 19, 12,13 The four instruction inputs to the OVER OPERATING RANGE (In Unit Loads)
device A Low-Power Schottky TTL Unit Load is defined as 20uA measured at
TO, T1.T2. T3 The four test inputs for the device 2.7V H1GH and —0.36mA measured at 0.4V LOW.
ORg, OR1, ORy, OR3 The four outputs of the device that are Qutput
connected to the four OR inputs of the fnput Output LOow
Am2309 i ’ ’
— — Pin No.’s _ Input/Qutput | Load HIGH MIL cOM'L
OE1, OEp Output Enable. When either OE input = ; R
is HIGH, the OR; outputs are in the 2 05 — — —
high impedance state. When both the 2 I 0.5 - - -
OE4 and OEg inputs are LOW, the OR 3 o 0.5 - - -
outputs are enabled and the selected
T — — —
data will be present. 4 3 05
5 To 0.5 - - -
6 T4 0.5 - - -
LOW-POWER SCHOTTKY INPUT/QUTPUT 7 T 05 = _ .
CURRENT INTERFACE CONDITIONS 2 .
8 GND - — - -
VCC DRIVING QUTPUT I DRIVEN INPUT‘ 9 ORO — 100 44 a4
| 10 OR1 - 100 44 44
lon % i 11 OR2 - 100 44 44
| 12 OR3 - 100 44 44
| 13 OE; 0.5 - - -
| 14 OE, 0.5 - - -
I 15 13 0.5 - - -
| O 16 Vee - — - -
| —
oL | 1y
-~
|
Note: Actual current flow direction shown.
2-13

Am29803

FUNCTION TABLE ORDERING INFORMATION
Function ‘3 lz |1 |0 T3 Tz T-| To OR3 ORZ 0R1 ORO
No Test L L L X X X X L L L L
N " X X Y% L L L L L Package Temperature Order
TestTg L - X X X H L L L H Type Range Number
X X L X L L L L
Test T L L WL X Ohn X C C y H Molded DipP 0°C to +70°C AM29803PC
x x L L 0 0 0 L Hermetic DIP 0°Cto +70°C AM29803DC
alox X L H L L L H Dice 0°Cto +70°C AM29803XC
TestTo& Ty Lt H X X A L L L H L : ° o
% X H g L L H H Hermetic DIP -65"Cto+125°C AM29803DM
X v % X L L T L Hermetic Flat Pak -55°C to +125°C AM29803FM
Test T2 LB L L x m X X L L L H Dice -55°C to +125°C AM29803XM
X L X L L L L L
X L X H L L L H
Test Tg & Tp LB L H Iy H X L L L H L
X H X H L L H H
X L L X L L L L
X L H X L L L H
TestTq &Tp LooH o H Ly H L X L L H L
X _H i L H H APPLICATION
X L L L L L L
X L L H L L L H
X L H L L L H L
X L H
TestTg, T1& T2 LR HH H Pl L F E L
X H L H L H L H
X H H L L H H L
X H H H L H H H DATA BUS
L X X L L L L
Test T3 HooL oL Ly X X ox L L L H ‘
L X X L L L L L INSTRUCTION REGISTER
L X L H
Test Tg& T3 H L L H 5 X i E - ll: h n 0P CODE | OTHER
H X X H L ‘ H H 1
L X L X L L L L 1
TestT1 & T3 H L H L :_“ i E § t t h E o ADDRESS Am2909 AND Am2811 MICROPROGRAM SEQUENCER
H b H X L L H H — ¢ counTer SATSS}I‘EI:? DE frmsmy i STACK POINTER
L X L L L L L L DECODER —l__
L X L H L L L H LOAD/COUNT OouTPUT
2 R
TestTg, T1 & T3 H b H Kl X L L L H L L
R 3 T3 e
H X H H L H H H
L L X X L L L L
L H X X L L L H
TestT2& T3 H H L L H L X X L L H L MICROPROGRAM |
H H X X L L H H COUNTER REGISTER
L L X L L L L L ; FLAGS
L L X H L L L H -
L H X L L L H L . o Foore 4
L H X H L L H H 0 NEXT ADDRESS
TestTp, T2 & T3 H H L H H L % v L H L L 51 MULOTL:_';ZiER l INCREMENTER l TEST
H L X H L H L H
H H X L L H H L on NemAY
H H X H L H H H OR BRANCH
CONTROL UNIT
L L L X L L L L |
L L H X L L L H 2 2 12
L H L X L L H L
Test T, To & Ta R O R by 5 n H -1 .
H L H X L H L H CARRY —= - AxéisTﬂ
H H L X L H H L OVR == 6 §§ ADDRESS ADDRESS
H H H X L H H H ZERQ —-} 5 zy 5 POLARITY CONTROL MICROPROGRAM MEMORY
SIGN —] 4 £E 5 CONTROL -} TEST
L L L L L L L L =4 2 BRANCH NEXT ADDRESS
L L L H L L L H e R+ ADDRESS SELECT OTHER
L L H L L L H L erc—w=]o ©
L L H H L L H H . ‘ ‘ I
L H L L L H L L ! —
L H L H L H L H . -——-—‘ E PIPELINE REGISTER |
L H H L L H H L - g Y I
L H H H L H H H
TestTp, T4, T2 & 73 H H H H H L L L H L L L TO Am2901
H L L H H L L H A
H L H L H L H L
H L H H H L H H OTHER
H H L L H H L L
H H L H H H L H
H H H L H H H L
H H H H H H H H
A typical computer control unit using the Am2909, Am2911, Am29803 and Am29811. Note that the least
L = LOW, H = HIGH, X = Don't care significant microprogram sequencer is an Am2909 and the more significant sequencers are Am2911’s.

2-14 2.15

Am29811

Next Address Control Unit

DISTINCTIVE CHARACTERISTICS

@ Next address contro! unit for the Am2911 Microprogram
Sequencer

® 16 next address instructions

® Test input for conditional instructions

® Separate outputs to control the Am2911, an independent
event counter, and a mapping PROM/branch address
interface

® Advanced Low-Power Schottky technology

® 100% reliability assurance testing in compliance with MIL-
STD-883

LOGIC DIAGRAM

TEST bc

FUNCTIONAL CHARACTERISTICS

The Am29811 is a Low-Power Schottky device designed specif-
ically for next address control of the Am2911 Microprogram
Sequencer. The device contains all outputs required to control
a high-performance computer control unit or a structured state
machine design using microprogramming techniques,

Sixteen instructions are available by using a four-bit instruc-
tion field lg.3. In addition, a test input is available such that
conditional instructions can be performed based on a condition
code test input.

The full instruction set consists of such functions as condi-
tional jumps, conditional jump-to-subroutine, conditional
return-from-subroutine, conditional repeat loops, conditional
branch to starting address, and so forth,

One Am29811 can be used to control any number of Am2911
Microprogram Sequencers. The Am2911 Sequencer is a four-
bit slice itself. Thus, one Am29811 Next Address Control
Unit and three Am2911 Microprogram Sequencers can be used
to build the most powerful, state-of-the-art, microprogram
sequencer capable of controlling 4k words of microprogram
memory.

COUNTER
ENABLE

PIPELINE
ENABLE

MATRIX
DECODING
ARRAY

o PUP

| s,

T, T, T
| OUTPUT
R P o ENABLE

P = Pass
F = Fail

CONNECTION DIAGRAM

Top View

WEE1. 161] Veo
pup]2 15[] OE

s 1wl

s; [1a [

so[s 2N

CNT LOAD [6 [l
eNTE[)7 10 [] TEST
eno [T o[T]#CE

Note: Pin 1 is marked for orientation.

LOGIC SYMBOL

CNT LOAD fO— 6
CNT E [Qmen 7
10 TEST

MAP E JO—n- 1
PLE |O 9
FEfO— 3
ppl—— 2

15 —O} o s
14
sob——s

I3 2 4 g

Vee = Pin 16
GND = Pin 8

Copyright © 1976 by Advanced Micro Devices, Inc.

2-16

Am29811

ELECTRICAL CHARACTERISTICS
The Following Conditions Apply Unless Otherwise Specified:
Veg = 5.0V £5%

COM'L Tp =0°Cto+70°C MIN. =475V MAX.=5.25V

MIL Ta=-55"Ct0o+126°C Vg =5.0V£10% MIN. =450V MAX. =550V
DC CHARACTERISTICS OVER OPERATING RANGE Typ.
Parameters Description Test Conditions (Note 1) Min. (Note 2) Max. Units
Vee = MIN, T = —2.0mA
VoH Output HIGH Voltage ce OH 24 Volts
VIN = Vigor Vi,
Ve = MIN. lor, =8.0mA 0.4
VoL Qutput LOW Voltage ViN = Vi or VL B Volts
loL = 16mA 0.45
Guaranteed input logical HIGH
ViH Input HIGH Level voltage for all inputs 2.0 Volts
Guaranteed input logical LOW MiL 0.7
ViL Input LOW Level voltage for all inputs COM'L 08 Voits
V) Input Clamp Voltage Ve =MIN, hiy = -18mA -1.5 Voits
I Input LOW Current Vee = MAX., VN = 0.4V —0.1 mA
IiH Input HIGH Current Veoe = MAX, VN =27V 10 LA
Iy Input HIGH Current Vee = MAX, Viy =7.0V 1.0 mA
. Vo =04V —40
o Off-State (High-impedance} Ve = MAX. o] A
Output Current Vo =24V 40
isc Output Short Circuit Current Ve = MAX. 12 a5 mA
(Note 3)
Power Supply Current ~
i V = MAX. 55 80 mA
ce (Note 4) cc

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical limits are at Voo = 5.0V, 25°C ambient and maximum leading.
3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
4. Inputs grounded; outputs open.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature

—65°C to +1650°C

Temperature {Ambient) Under Bias

—55°C to +125°C

Supply Voltage to Ground Potential Continusus

—-05V to+7.0V

DC Voltage Applied to Qutputs for High Output State

—0.5V to +V¢¢ max.

DC Input Voltage

—~0.5V to +7.0V

DC QOutput Current, Into Qutputs

30mA

DC Input Current

—30mA to +5.0mA

2-17

Am29811
SWITCHING CHARACTERISTICS
(Ta =+25°C, Vg = 5.0V)
Parameters Description Test Conditions Min. Typ. Max. Units
1
PLH lj to Any Output 30 50 ns
PHL
t =
PLH Test to Any Output CL =15pF 30 50 ns
tpHL R =2.0kQ
ZH —
E to Any Output 30 40 ns
tz
tHz __ Cp =5.0pF
iz E to Any Output RL = 2.0kQ 18 35 ns

SWITCHING CHARACTERISTICS COM'L MlL
OVER OPERATING RANGE
Tao=0°Cto +70°C Ta = ~55°C to +125°C
Vee =5.0V 5% Vee =5.0V +10%
Parameters Description Test Conditions Min. Max. Min. Max. Units
tPLH
{j to Any Output 55 75 s
PHL
tPLH
Test to Any Output 55 75 ns
tPHL CL = 1bpF
tzH Ry =2.0kQ
o OF to Any Output 40 50 ns
tHz J—
s OE to Any Output 35 40 ns

lg. I, |2, I3
TEST

Counter Load

Counter Enable

Map Enable

DEFINITION OF FUNCTIONAL TERMS

The four instruction inputs tc the Am29811.

The condition code input to the device.
When the test input is LOW, the device
assumes the test has failed. When the test
input is HIGH, the device assumes the con-
dition code required has been met; the test
has passed.

This output is used to drive the parallel load
input of an Am25LS169 up/down counter.

This output is used to drive the counter
enable input of an Am25LS169 up/down
counter.

This output is used to control the three-state
outputs of the mapping PROM or PLA used
to provide the initial starting address for
each machine instruction.

Pipeline Enable

FE File Enable

PUP

Sg. 81

This output is used to control the three-state
output of the pipeline register (Am2918)
containing the branch address for the com-
puter control unit.

This output is used to drive the file enable
input of the Am2911. When the file enable
output is LOW, a stack operation will take
place.

Push/Pop. The PUP output is used to drive
the push/pop input of the Am2911 Micro-
program Sequencer. When the PUP output is
HIGH, a push will take place when the file is
enabled. When the PUP output is LOW, a
pop will take place when the file is enabled.

These two outputs are used to drive the Sp
and Sy inputs to the Am2911 Microprogram
Sequencer. These outputs control whether
the direct input, the register, the micro-
program counter, or the stack is selected as
the source of the rext address for the micro-
program memory,

2-18

Am29811 Am29811

LOW-POWER SCHOTTKY INPUT/OUTPUT GUARANTEED LOADING RULES FUNCTION TABLE
CURRENT INTERFACE CONDITIONS OVER OPERATING RANGE (In Unit Loads)
A Low-Power Schottky TTL Unit Load is defined as 20uA measured at INPUTS QUTPUTS
2.7V HIGH and —0.36mA measured at 0.4V LOW, MNEMONIC INSTRUCTION FUNCTION TEST | NEXT ADDR FiLE | COUNTER | MAP-E | PL.E
1312 11 1g INPUT SOURCE
Output iz LL Lt JUNMP ZERO X D HOLD LLE H L
BRIVING OUTPUT DRIVEN INPUT Input OQutput LOW cis UL LH COND JSB PL L PC HOLD HOLD H C
| Py Pin No.'s Input/Qutput | Load HIGH MIL COM'L H D PUSH HOLD H L
[—— JMAP L L HL JUMP MAFP X D HOLD HOLD L H
| [MAP E — oo 44 44 cip L L HH COND JUMP PL L PC HOLD HOLD H i
| 5 PUP _ 100 44 44 H D HOLD HOLD H L
— w PUSH LH L L PUSH/COND LD CNTR L PC PUSH HOLD H L
‘ 3 FE — 100 44 H PC PUSH LOAD H L
| 4 S _ 100 44 44 s JsRP LoH Lo COND JSB R/PL L R PUSH HOLD H L
| H D PUSH HOLD H L
| 5 Sg - 100 44 44 cov U HHL COND JUMP VECTOR L PC HOLD HOLD H H
| 6 CNT LOAD — 100 44 44 H D HOLD HOLD H H
_ JRP L HHH COND JUMP R/PL L R HOLD HOLD H X
! 7 CNTE - 100 44 44 s H b HOLD HOLD H L
i g GND - — N _ RFCT H L L L REPEAT LOGP, CNTR # 0 L F HOLD DEC H L
[H eC pOP HOLD H L
| 9 PLE — 100 44 44 RPCT H L L H REPEAT PL,CNTR # 0 L D HOLD DEC H L
— _ - H PC HOLD HOLD H L
] 10 TEST 05 CRTN H L H L COND RTN L PC HOLD HOLD H L
| 11 lo 05 - - - H F POP HOLD H L
| r = | oF ~ — - cirp HL HH COND JUMP PL & POP L PC HOLD HOLD H L
=] : . H D PoOP HOLD H L
13 I 0.5 — — - LDCT H O H L L LOAD CNTR & CONTINUE X pC HOLD LOAD H L
55 - LooP HHLH TEST END LOOP L F HOLD HOLD H L
14 I3 . — - H PC POP HOLD H L
15 OE - 100 44 44 CONT H H H L | coNTiNue X PC HOLD HOLD H C
! Jp H H H H JUMP PL X D HOLD HOLD H L
i . 16 Vee - - - -
Note: Actual current flow direction shown. L = LOW DEC = Decrement
H=HIGH *LL = Special Case
X = Don’t Care
INSTRUCTION TABLE TRUTH TABLE
INPUTS QUTPUTS
MNEMONIC FUNCTION R‘Sé; FILE CDOUNTER W
-
o SOURCE o < o L
<
MNEMONIC | 1312 17 Ig INSTRUCTION i3 12 11 1g | 8150 | B {8 |1z {a'
Jz L L L L |Jump to Address Zero PIN NO. 14 13 12 11 10| 4 5 3 2 | 6 701 9
CJS L L L H | Conditional Jump-to-Subroutine with Jump Address Jz JUMP ZERO LoL oL oLoL HoH H H| L L|H L
NP . L L L L H HooH H Hol oL Ll L
in Pipeline Register. cis COND JSB PL L L L H L [H Wl R B H [
JMAP L L H L |.Jump to Address at Mapping PROM Output. L L L H H H H L H H H | B L
CJpP L L H H | Conditional Jump to Address in Pipeline Register JMAP JUMP MAP L L H L L H H H H H WL H
X . L L H L H H H H H H H | L H
PUSH L H L L | Push Stack and Conditionally Load Counter P COND JUMP PL L L h onL L H I — T Th °
JSRP L H L H | Jump-to-Subroutine with Starting Address Conditionally L &L H H H H H H H H H | H L
Selected from Am2911 R-Register or Pipeline Register. PUSH PUSH/COND LD CNTR t : t t : t t :: : C : : 1':
CJV L H H L | Conditional Jump to Vector Address, JSRP COND JSB R/PL L OH L H L L H L H H H K L
JRP L H H H | Jump to Address Conditionally Selected from Am2911 i L H L H H H H L Holw HlH L
R-Register or Pipeline Register cuv COND JUMP VECTOR LW OH LU LoL H H ol H H [H H
) L H #H L H H o H H H H H | H H
RFCT H L L L | Repeat Loop if Counter is not Equal to Zero. RP COND JUMP R/PL CTHTH AL CH " H H "R v
RPCT H L L H | Repeat Pipeline Address if Counter is not Equal to Zero. . L H H H H H H H H H W H L
L . RFCT REPEATLOOP,CTR #0 | H L L L L oL H L H] L
CRTN H L H L | Conditional Return-from-Subroutine. HoL oL L ou Lo N Lol w - L
CJPP H L H H | Conditional Jump to Pipeline Address and Pop Stack. RPCT REPEAT PL, CTR # 0 H L L H € H H H H H L L
. H L L H H L H H | H HlH L
LDCT H H L L | Load Counter and Continue. - e, prep—— PRI i o N 5 o T .
LOOP H H L H ! Test &nd of Loop. H L H L _H HoL L Ll H|H L
CONT H H H L | Continue to Next Address cipp COND JUMPPL&POP | +H L H H L LoL H L W H | H L
o : ! H oL H H OH H H L L H HlH L
JP H H H H | Jump to Pipeline Register Address. LDCT LDCNTR&CONTINUE |H H L L L oL H H L H | H L
H H L L H L L H H L H H L
LOOP TEST END LOOP H o oH L H L HooL H L oH H|H i
H H L H H Lob L L H H o H L
CONT CONTINUE H H H L L [H H | H Ho| H L
L H H L H L L H H H H H L
I3 JUMP PL H H H H L H H H Hh HlH L
H H H H H H H H H H H H L
L =LOW
H=HIGH

2-19 2.20

Am29811

ORDERING INFORMATION

Am2922

Eight Input Multiplexer With Control Register

DISTINCTIVE CHARACTERISTICS
® High-speed eight-input multiplexer

® On-chip select field and polarity control register

® Buffered common register enable

® Buffered common asynchronous clear input

® Polarity control to select multiplexer input data as in-
verting or non-inverting

® Three-state outputs for expansion

® Features improved noise margin, higher drive, and faster

operation

® 100% reliability assurance testing’in compliance with MIL-
STD-883

Package Temperature Order

Type Range Number
Molded DIP 0°C to +70°C AM29811PC
Hermetic DIP 0°C to +70°C AM29811DC
Dice 0°Cto +70°C AM29811XC
Hermetic DIP -55°C to +125°C AM29811DM
Hermetic Flat Pak ~-55°C to +125°C AM29811FM
Dice -55°C to +125°C AM29811XM

APPLICATION

LOGIC DIAGRAM

o

Do

=)
4)
D
by
|
)|
=
3
=
=

D2

L

03

Dy

4

O

s

—p>

e
bt

Ps

o, ——

1 I
[+ [§ J a @ j a @ J a
cLR [H CLRH CLR CLR
B cp o cp 5 ce 5 cp
[[] [] 1$
CLOCK | CLR

CLEAR

IC |B IA POL

FUNCTIONAL DESCRIPTION

The Am2922 multiplexer with control register is an advanced
Low-Power Schottky circuit. The device features extremely
high speed from clock to output and is intended for use in
high-speed computer control units or structured state machine
designs.

The device contains an internal register to hold the A, B, and
C multiplexer select field as well as the POL (polarity) control
bit. These input bits (A, B, C, POL) are stored in the register,
when the register is enabled. The register enable input (RE) is
used to selectively load data into the register. When RE is
LOW, new data is entered into the register on the LOW-to-
HIGH transition of the clock. When RE is HIGH, the register
will retain its current data. An asynchronous master clear
(CLR) input is used to reset the internal Q output of the
register to a logic LOW level.

The A, B, and C outputs of the register control the eight-input
muttiplexer data select. These control signals switch one of
eight data inputs into the exclusive NOR gate used to control
output polarity. The logic signal contained in the polarity
control flip-flop is used to control the polarity at the output,
A HIGH on the polarity control flip-flop output represents
true (non-inverting) output data and a LOW at the polarity
control flip-flop output causes the input data to be inverted
at the output. In a computer control unit, this allows testing
of either true or complemented flag data at the microprogram
sequencer test input.

An active LOW multiplexer enable input (MEJ allows the
selected data to be passed through the multiplexer to the
output buffer. When the ME is LOW, the incoming data may
be passed to the output. The device also features a three-state
output enable control input {OE) to control the three-state
output for expansion. When OE is LOW, the output is enabled.
When OE is HIGH, the output is in the high impedance state.

TO Am2901

OTHER

A Typical Computer Control Unit Using the Am2911 and Am29811

INSTRUCTION REGISTER
OP CODE l OTHER
D; ADDRESS Am2811 MICROPROGRAM SEQUENCERS
STARTING FE, PUP eR
—— TC COUNTER ADDRESS ~ DE fe— STACK POINT
DECODER
LOAD/COUNT ouTPUT
REGISTER
SUBROUTINE
AND LOOP STACK
MICROPROGRAM
COUNTER REGISTER
D R F PC
S0 NEXT ADDRESS
s, MULTIPLEXER INCREMENTER
oUTPUT
2 2 A2 ‘ }
L_wis
CARRY e} 7 Am29811
w NEXT
OVR ~—f & 5 ADDRESS ADDRESS
RO 2% 5 CONTROL MICROPROGRAM MEMORY
—] Z
gt RS- F AR N - Y B
SIGN 4 4 3 BRANCH NEXT ADDRESS OTHER
23 ADDRESS SELECT
INRPT —aef 3 z32
O
ETC o=t 2 { l ‘
1 1 I —
| & PIPELINE REGISTER
] ! : | L

CONNECTION DIAGRAM
Top View

Vec Dy Dp D3 OFE Y Dy D5 Dg Dy

A O000000A0n0

20 18 18 17 16 15 14 13 12 11

spepageyeg

.
Al

Note: Pin 1 is marked for orientation.

LOGIC SYMBOL

118 18 17 14 13 12 11

Pty]
2 —ofme Dp D1 D2 D3 Dy D5 Dg Dy ¢ plo— 8
4 —a REJO— 3
6 ——8 CP— 7
s —c
9 —roL v OEfo— 16 3
15
Ve = Pin 20
GND= Pin 10

2-21

2-22

EMULATING THE Am2910
WITH THE Am2911/Am29811

It is quite straightforward to emulate almost all of the functions
of the Am2910 by using three Am2911’s and one Am29811
by combining the features of Figure 8, Figure 10 and Figure 11
from the Advanced Micro Devices Microprogramming Hand-
book. In addition, the first 15 instructions of the Am29811
match directly with the instructions of the Am2910.

The Am2910 is most directly represented by the architecture
shown in Figure 11 with two major exceptions. The first of
these involves the least significant sequencer slice U8. If the
Am2909 (U8), as shown in Figure 11, is replaced with the
Am?2911 (U8}, as shown in Figure 8, the first major change has
been completed. Needless to say, the Am29803 (U23) and
Am2918 (U22) as shown in Figure 11 can no longer be used.
The second change required in Figure 11 involves the three
Am2515163 counters {U9, U10, and U11). This counter sec-
tion should be replaced with the down counter configuration
as shown in Figure 10 utilizing the three Am25L5169 counters
(U9, U10, and U11). Finally, the RE inputs on the Am2911’s
should be connected to the counter load line instead of ground.
If these three changes are implemented, the logic diagram of
Figure 11 will very nearly represent the Am2910.

This connection will now come very close to emulating the
Am2910 in the highest speed possible configuration. The only
differences between this configuration and the Am2910 are as
follows. First, the Am2910 three-way branch instruction can-
not be executed. Second, the actual value loaded in the counter
(US, U10, and U11) will be executed N+2 times where N is
the value loaded in the counter. In the Am2910, the micro-

instruction will be executed N+1 times, based on the value
toaded on the counter. Incidentally, if zero is loaded into the
counter in the Am2910, the microinstruction will be executed
one time when in the pipeline register. If speed is not a consid-
eration, the four-input multiplexer {U26) and the D flip-flop
(U27) can be removed and the carry output from the counter
(U9) can be connected directly to the test 15 input of the
eight-input multiplexer (U12). This will result in an exact
emulation of the counter on the Am2910 chip. However, the
total ripple time of the three-stage counter now must be added
to the propagation time from the test input to the pipeline
register in order to compute the minimum microcycle time.
(This has been optimized differently on the Am2910.)

Thus, based on the configuration shown in Figure 11, the
Am2910 replaces eight integrated circuits. These include U6,
U7, U8, U9, U10, U11, U15 and U18B. It also eliminates the
ability to use U22 and U23 in the N-way branch mode. The
counter test connection formed via U26, U27, and U12 is
performed internally on the Am2910 and no condition code
multiplexer {U12) connection is required. We might also men-
tion that the function performed by U13, U14, and U17 have
been combined into a single high-speed device known as the
Am2922 Condition Code Multiplexer.

At the current time, it is anticipated that by utilizing the
Am?2910, Am2922, high-speed PROM, and a high-speed pipe-
line register, it will be possible to run 100ns microcycles based
on worst-case propagation delays. Please refer to the Am2910
data sheet for further details on the operation of the Am2910.

2-23

MULTIPLEXER SELECT

Rog Ri9 Rig BRyy SELECT
¢] o} 0 o} TEST O
0 0 0 1 TEST 1
[¢] 0 1 0 TEST 2
L] [
] @
° &
1 1 1 1 TEST 15

POLARITY CONTROL

R1i6 CUTPUT
0 COMPLEMENT
OF TEST
1 TRUE TEST

NEXT ADDRESS CONTROL

R1s Ri4 R13 Rq2 FUNCTION
NEXT
X X X X INSTRUCTION

MACHINE INSTRUCTION REGISTER

Ro1 FUNCTION

[¢] LOAD

1 HOLD

CONTROL VALUE

Rq1-Rg FUNCTION

KX K--- XXX VALUE

JUMP ADDRESS
BR11-BRg FUNCTION
XXX---XXX JUMP ADDRESS

U35 014013015 D97 04g Dy Dg 16-BIT DATA BUS 5 D5 D4 D3 Dz Dy Dg
¢ | Vee
Ry Rg Rg Ry
6l 5{ 4| 2 515141311 wli7[1ai] 8 7} 4 3 13| 8] 7] 4| 3
1cy 167 1¢, 1C D C B A CLR 8D 7D 6D 50 45 1 50 4D 3D 2D 1D
R 15 10 15 1015 10 © 40 3b 20 1D o
1 Ugq co Usg R21 1 U, 11 TE Uy E
16 2 E CP oy —E CP
Am25L5153 B f Am25L$163 Am25L5163 Am25L5163 Am25L8377 Am25L8377
A 2% A [oAD P ¢ [OAD P cP TOAD P o 8Q 7Q 6Q 50 4Q 3Q 20 1Q 80 70 5Q 5Q 4Q 3Q 20 1Q
7 917 2 917 2 a| 7| 2 19f16] 151121 i 6] 5] 2
OTHER
v
cc 3
Do
1 Up, 9
cp —_—
CLR 74174
Q
2
15 1] 2] 3 4] 7| 6] 3 213l a] 7] 6] s w] 1] 2) 314 7l6ls
A7 Ag A5 Ay Az Ay Ag Ag A7 Ag Ag Ag Az Ay Ay Ay Ay Ag Ag Ag Az Ay Ay Ag
Uy 14 Uy 14 Us 14
s
29761 cs Am29761 s Am29761 cs
TEST 15 i1 P 03 05 Oy O cs = Oy Oy g Og cs = 05 07 07 O cs | =
TEST 14 Do, 9]10] 1172 B gT0i11112 3] 51011112 3]
TEST 13 4y }
TEST 12 - 7] IS il
TEST 11 P4 12 5o
- D3 Am745251 BRg
TEST 10 2 6
Dy w 7 BRg
TEST 9 3 I
0, 5 2 2Y R
TEST 8 4 v 1A 6
Dg BRg
c B A S 3 BR,
0] 1] o7 . 8R,
2A B8R,
Uyg B8Ry
! BRy,
Am748158 5
28 7 6 _L ai 5] 6! 7 41 57 60 7 4] 5} 6| 7
TEST 7 2] CNT _ CNTLOAD} , = D3 Dy D¢ Dy 07 Dy 7 i D3 D2 010 .
AR o b N
TEST 6 3] 7 ENABLE §iapE A Cn Cova Cn Vee
Dg 15 4 1 _ b2 T9F__ __ i3 193 __ iz
TEST 5 i1 G v TEST FE FE RE j—! FE AT o
5 s 3 20 20
TEST 4 5 o, Usg vy PUP puP Ug e up g
= 1 1 . A E
TEzIz ; by Am745251 . Amzos11 S1 42 54 Am28Te Am2911 s, am2911
TE: 5 10 1 1 10 1
Tesrs 712 w Sg So cp cp Sy cp CLOCK
D, 5 [E1 __1ls 9 11 i] [i
TEST O 4, v _[— 3 PLE ZERO oE L GF }— —1 ZERD OF
o0 Vg Yo Yo ¥ Y Yy Yy Yq ¥
3 Y2 Y1 g 1 Yo 3 Y2 Y1 Yo
__L c B A s =13 2 1 o
15]14] 13 12 13]12 14 13] 12
= el 0] il 9 1] 13l 1z2] 0
) ot
Ri9|R1g [R17 {Rao | Rog R15{R1p |Rya [Ra3 R12 :
Vo v !
w0 74 2] 18] 1a ce cc 2 w| 7f s| o2 ZERO : ¢
0, @ Q Q3 @ . ; 0, 03 0 Q QDO s |
g CLR cLA Uy 5 Migq Mg Big Mg Mg Wig Mg My My Mg
Am748175 P Am745174 . L WICROPROGRAM MEMORY
D, Dy by D3 Ds Dz Dy Dy II!{H?{\H]H;];;gwfff!:j’l?}Il;EIEixli}f!lxlllil;:;[l!iqlll
i i i i : '
sl e P i 60 56 52 48 22 @ 3. 32 28 2 20 18 2 8 4 i
19 18 17 20 185 I
————— (12.-27) i
T i0--11)
; !
| U S——
i 3 H 1 0
]
15 | 12] 4] 1]
D, T, D; Do é B3 D2 By Do
7 s i 7 u 9
e Ko S Lo Lol oe 20 cp
Am2918
Q3 Gy Gy G ‘o Q3 0y Qp Qg Y3 Y, Yy Yg
P 7 T H = H 1
14[11(52 5] 213 1G§6§3f .4!11§ 5 2[13]1{7‘6‘31
Ryq Ryg Py g R Ry | sAg | BR Ry Ry Ry Ry | BR, | BRg
~—— S |
BR, BAg BR; BRy
(Ro—Ryq) et e e i
{BRg- BRy 4l

Figure 8. Computer Control Unit with Am29811.

FROM Rg—R1q

Vee [
—_—— —
Rq3 Ryg Rg Rg Ry Rg Rp Ry Rz Ry Ry Ry
sIs 4] 3 6‘5[413[1 6]514]3'1 elsla|3l1
1cy 1G4 1y 1C3 D C B AUD D C B AUD D C B AUD
1] [) LCIL])) KCINL] BT}
1 Uzt 14 Ug Yig Uqq
I Am25L$163 > Am251.5169 Am25L5169 Am25L5169
1Y 8 ? - [OAD cP P LOAD <P P 1OAD cP —
7 7 3 2 71 9 2 7] 2
Vee 3
Dg
1 Uy 9 CLOCK
LR P
CLR m7astra ©
Qg
2
1
TEST 15 2lo,
TEST 14 E1 18
TEST 13 14 DB
TEST 12 5} IS
Ds 12
TEST 11 1
D3 Am748251
TEST 10 2 6
D, w
TEST 9 1
5 2
_Tests 04 Dg % 1A
c B A S EJ P
I I
Ugg
Am745158
7 6
TEST 7 2], Ehf;l\“;'LE CNT LOAD|
TEST 6 =) MAPE
Dg 15 4 10 12
TESTS 21 98 G 1Y TEST FE f———
3 H 3
TEST 4 15 _L_- EE—
TEST3 s e 1 e P 4
Dy Am745251 Am29811 St p——
TEST 2 2] o 5
TEST 1 3] 2 v %
Dy 15 18
TEST 0 4 5 cs PLE f———
Dg %
c B A S L3 2 1 g
= g| 10} 11} 7 14| 13§ 12| 11
]Rm Rig |R14|R13} Ry2 R21
1wl 7 2{ 18] 14 Vee CLOCK Ve 2] 10f 7} 5} 2
Q, 9 0 Q3 Qg 1 | ; 0, Q3 @ Q Q
CLR CLR
Urg Uy7 oy 15
9
Am748175 Py & s Am74§175
D, Dy Dy Dy D, Dg Dy Dy Dy Dy
12] 5| 4| 13] 3] 1]) 4f 3| 1]
19 18 17 20 6 15 14 13 12 21

e

Figure 10. Am25LS169 Counter Connection.

MULTIPLEXER SELECT

R20 Ris Ry1g Rq7 SELECT
0] 0 0 TEST O

0 0 0 1 TEST 1
0 ¢l 1 0 TEST 2
. .
* (]
. .
1 1 1 1 TEST 15

POLARITY CONTROL

R1s OuUTPUT
0 COMPLEMENT OF TEST
1 TRUE TEST

NEXT ADDRESS CONTROL

R15 Ri4 R13 Ry2 FUNCTION
NEXT
X X X X | \NSTRUCTION

MACHINE INSTRUCTION REGISTER

R21 FUNCTION
0 LOAD
1 HOLD

COUNTER VALUE

R11-Rg FUNCTION
XXX--- XXX VALUE

JUMP ADDRESS

BR17-BRg FUNCTION

XXX---XXX JUMP ADDRESS

OR BRANCH CONTROL

Ras R24 R23 Roag FUNCTION

TEST

X X X X INSTRUCTION

16-8IT DATA BUS
D5 Dyq Dy3012 011010 Po Py Dy Dg Dg Dy D3 Dp Dy Dg
— —1 Vee
R11Rio Ry Rg Ry Rg Rg Ra
6l sl 4] 3 5[5[4'3!1 515|4|3|1 18|17} 14|13 8| 7| 4] 3 18117714{13] 8] 7| 4] 3
1Cg 16y 1c, 1€ D C B ACLR D C B A CLR 8D 7D 60 5D 4D 3D 2D 1D 8D 70 6D 5D 4D 3D 2D 1D
0 18 16 G i1 IS S KCIRE Lho s s e
,]
Uze] co U1o Y vz
1 . 2 11 "
1g Am25LS153 Am25L8163 ., 12 Am25L8183 e k2 Am25LS163 oo (2 s Am25L8377 cp Am25L8377 OTHER STARTING
oA B P LOAD » LOAC P LOAD 80 70 6Q 50 4Q 3Q 2Q 1Q 8Q 70 BQ 50 40 3Q 20 1Q ADDRESS
= Tl 7 9[7 P 7 S 19]6]16]12] 9] 6] 5] 2][] 2] 9] 6] | 2] « @& 8 - o
E E R E e
b — o £ & & «
< < S < <
| OTHER 5 5 6 &5 5
Vee
: _]
D,
0 CLR
Yo7
Am745174 9
a cp T
o 5] 1| 2| 3} 4] 7] 6|5 5] 1] 2] 3] 4] 7] 6] 5 15] 1] 2f 3] 4] 7] 6] 5 1a] 3] 12| 11f 10 14] 13| 12| 1] 10
2 Ay Ag Ag Ag Az Ay Aj Ag A7 Ag Ag Ay Ag Ay Ar Ag Ay Ag A5 A4 Az Ay Ay Ag Ag Az Ay Ap A A Ay Ay Ay Ay
u 14 u 14 u 14 u [RLIET . u
3 s 4 s 5 s 24 = = 25
TEST 15 2}o, 1vg 14 Am29761 Am29761 Am29761 Am29751 Am29751
8 15 5 —
TEST 14 2] og w 26 Yy 03 O, 07 Og cs = 03 0, 04 Og cs = 03 0, 07 Oy cs = 05 04 O3 0y 07 Of 05 04 O3 0y O Oy
TEST 13 1v, |8
— 0 2 AR 13] 9110} 11}12 3] 9l 1of 1112 13] 6] 5] 4] 3 2] 1 6 s| 4] 3| 2| 1
JEST12 ko, Un 5 LB Pr Ui 1vail
TEST 11 o, Ammszsr Y Am748139 2Yg |12 R
TEST 10 2 = 2v, |11 n
D, 1 BRyg
TESTY 3l o, 2v, |10 BRg
TEST 8 1o, 2v519 BRg
c B A_S 1A 1B 2A 2B 227
6
o] 0] 1] 7 2| 3] 1a] 13 st
BR,
BR3
TEST INPUTS BR;
FOR BRy
CONDITIONAL 8R
TEST Y o
— __L 4] 56l 7 al sl 6] 7 7911132345[14 13
; = Dy Dz Dy Dg . 7 18 D3 Dy Dy Dg e b 24§ Dy Dy Dy Do Ry Ry Ry Ry |23 GE, DOE, -
Cose n+4 {27
TEST? 21 8 il a 8 4 | SJCNT ' 3 3 o
= =17 w LOAD VIAPE e | RE $— RE
TEST 6 bg i B [- U 19f u 25 u 6 12 u 4
E FE (3 FE 7 FE s OR3 OR 23 T OR -TEST 3
TESTS o 5 2 6 7| e 2 20 20 26 [)3 37
o v v a 28 puP PUP Am2911 PUP Am2911 PUP Am2909 OR, OR, AM29803 T, oR-TEST2 | TEST INPUT FOR
TE by Y1a Uy ENABLE s e vls, s, g, o |10 10f n i or.TesT1 [1EWAY BRANCH
1
JEST3 1103 Am7as2st Am745158 Y15 5 0] 10} 1 6] s 12 9] 1 Is
TEST 2 2 Am29811 S0 0 cp 0 cp 0 ORy ORg Tg p— OR-TESTO
. 273 15 4 10 Tes 19 El) 5 16 _SjzEms o8 16 15{7ERD e 22
JESTI 2 @ R ST FLe 15 Y3 Y2 Y1 Yo Y3 Yo V3 Yo Y3 Y3 Y1 Yo '3 12 11 o
TESTO 430 — [15] 1413 12 1511411312 21| 20]19] 18 s] 2] 3
c B A S = s ol 4 g
— gf 10f 11| 7| 1 1w} 13 2] N -
Fao = Ros | R24 (R23 | B2z
Rig {R1g {R17 [R2o |Rao R1g |R15 {R14 [Ri3 1Rz |Ros =
0] 7} 2f 18] 14 Vee 12] s0} 7] s 2} 18 w| 1| s} 2
Q 0; Qp Q3 0O e 1 1] @ 03 0 O Q G5 O3 @ O O
L CLR 7
U 9 3 v 9 Yzz
17 18 v
cp cpP Aq1 Arp Ag A Ay Ag Ag A, Az Ay Ay A ce £ cc
Am74S175 Am745174 11710 %9 8 7 T8 s T4 3 T2 S o Am2918
HMICRCPROGRAM MEMORY
D Dy Dg D3 Dy D3 Dy Dy Dy Dy D3 Gy Dy Dy
L T Tl 1 [TTETTTT LRI LI T Ty L LI
BENREE sl el e] s LA A R R R R L A A A R R] w2 el]
Mig Mg My Mg Mg Mg Myg Myp Moy Mgo Mg Mzp Mgg Mgg Map Mgs Mgp Mag My Myg Mg Mgy Mg Mg My Mas Maq Mag Myy
[Moz ~Mas
Myp=Mpq |
Mg ~-Mqq
|
]
cLock
J—
M1 My Mg Mz Mg My My My Mg
15| 121 41 1[152 122 15[12| 4[1’
7 By Dz Dy By 7 o3 Dz 7 D3 Dy Dy Dg
L—Q) OF Use — OF Usg OE Uy
9 9 120 9
P Am2918 e Am2918 or Am2918
030, 07 Qy Y3 ¥, ¥p Y Q3 07 Q1 Gg Y3 Y2 Yy ¥g Q3 0 Q1 Q Y3 Yy Yq Vg
1 11 5] 2] 1310} 6] 3
14[1]5[2|13 1o|s 3 14§1‘o[| | [DEBEE 10[6 3|
R11RigRg Rg | BRyg | BRg Ry Rg Rg Fs | BRg | BRy R3 Ry o | BR2 | BRo
BR1q BRg ! BRy BRg BRj BR,
Ro— R [I G]
1 BRg-BRqq

Figure 11. High Performance Computer Control Unit with Am2909/2911.

< DATA B dS (/6 BI7S) >

16
BI18

Vs

INSTRU CTroN
fadbili Bus INTERICE REGISTER, {76 girs)
' L DTS
WAPPING PROM e
— (OWTER &_ﬁ/ ’
———— - —— - — | -1 " N ' p {/
9 L L = yux ‘ |
A coubirion A 27811 pm 29 1] A 29 1/ A2l ; pM 290! Amzgol 290! 2907
Cobe NEXT RDRESS]™| pueko pROGRo MICKOROGRAM) py1¢ Ko ROGRI —T*— BIPOLAR. oAl e e |
o oNTROL encer SEpuEnCEL Sequencex MICRD- nicRO~ YICRO - 1RO~
[¢ SEQUENCE | o M prosessor. | | I procEssor. P ,ékoc&soﬁ e resoR. ‘———\I/
’ \ COFERAID A B 88T | | 2797us <~
b%f‘j[REG|STER
KOG
PRO M H1CROPROGRAM MEMORY
(16 BITS)
PIPELINGE REGISTER
! T — |
OTHER ‘L
AM291Y FWQ‘?Z’Z r2sa0 Py ——
PRIORITY PROGR A 5 PROGRAM PROGRAM 2R OGRAM
coNTROL ConNTROL ConTaOL 7 7
JNTERRUPT NI oA ‘ O,&\ANIT Gcﬁaﬁg
T
¢ HDDRESS 2us s ams) >

CoNTROL puUS - e >

CONTRACT HO. ADVANCED MICRO DEVICES
901 THOMPSON PLACE, SUNNYVALE, CALIF.

kW] TPl Am oo

{F/mm‘e /5, TYHCRL By 2560 MirPOPR OCESSOR

APPROVED DATE M/U(O/QKJKESS oRr

APPROVED e SBE CIASS DRAWING HO.]

APPROVED I "DATE | -}
SCALE: | T sheer

MICRO
DEVICES INC.

ADVANCED
901 Thompson e

California

(408 -
TWX: 910-339-

TELEX: 34-

RRNRRRRRRREEG
RIRRRRRRREREA
RRRRRRRRRGER
RIRRRRRRRREA
RRRRIRILIRIREE
RRRRRLIRREE
QRRRREINEIE
QRRRRREAA
ﬂaﬂﬂﬂﬂﬂﬂ
RINRRRRRRE
RIRRRRRRE
QRRRRRRENETN
QRANRRRRREIEN
QRN
sﬂﬂﬂﬂﬂﬂﬂﬂn
sﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ sﬂﬂﬂﬂﬂﬂ
bﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂssﬁﬂﬂﬂﬂaﬂﬂﬂﬂ
RELRLRRELELERELERRELEEREEEEEG
RELRLRRRERRRRREREREERRLEREEER
R REREERELEERRRRRRRRRER
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
RELRRLLRRRRREELRRRRRRRRRAER
ﬂﬂﬂﬂﬂﬂﬂWﬂﬂﬂﬂﬂﬂﬂ RIRRIKRLGRLR

1 ﬁﬂﬂﬂﬂ&
s QRN
AIRRRRIRRRIRG
RlRRRRRR
IR
ytﬂﬂﬂﬂﬂﬂﬂ
ssﬂﬂﬂﬂﬂﬂ
m{

1Dﬂﬂﬂ1
m bu bu Pu Pu Pu bu B
ﬂﬂﬂ

ﬂﬂﬂﬂ
’

Pu Pu Pu P P P P P P P
ﬂ

ﬂﬂﬂﬂ
ﬂ

1

w
Pn P Pu Pu Pu P b P P P P P P P P Py

11ﬂﬁﬂﬂﬂ

Dﬂﬂﬂﬂ
IARRE

u Pu P Pu Pu P P P P

1
P P P P P Py Py

1
P Pa P by P Pa P P P P Py P P P P Py

Pu P P P P P P P P P
P P P P P P P P Py

Pn Pu Pu Pu Pu P P P P P P P P P P Py
1

P Pu u Pu Pu P P P P P P

‘

-
=

elel

