s

SECTICN VI
PROGRAMMING EXERCISES

INTRODUCTION

The Am2900 Evaluation and Learning Kit is intended to teach
the basics of microprogramming to the hardware design engineer.
The exercises are geared to the objectives of demonstrating the
uses of the Am2901 and Am2909% and to involve the user in the
microprogramming of these devices. 1In addition, it is intended
to allow evaluation of the Am2901 and Am2909 in an application
environment. As such, the learning exercises are divided into
two sections. These include static exercises and dynamic exer-
cises, The static exercises are performed using the toggle switches
and momentary switches available on the printed circuit board. Thé
user clocks the system by hand observing the various states of the
machine at each point. The dynamic tests are set up using the
switches on the printed circuit board but are evaluated by using
an external pulse generator and oscilloscope. This allows the
Am29%01 and Am2909 to be tested under operating conditions. In this
fashion, the student can learn microprogramming technigques in the
SINGLE STEP CLOCK mode and can evaluate the components in the
PULSE GENERATOR mode, bearing in mind that the kit has not been
designed as a small computer. However, once the user understands
the Am2901, Am2909 and the principles of mlcroprogrammlng, then
the design of a computer becomes obvious.

The static test exercises are divided into three basic groups.
The first group is intended to familiarize the engineer with the
Am2901 capabilities. The second group is intended to familiarize
the engineer with the Am2909 functions. The third group of exer-
cises that can be generated appear almost infinite. The exercises
presented here are only representatlve and the student is encouraged
to write numercus additional exercises to evaluate any specific
parameter or feature in which he is interested.

In the dynamic testing mode, several exercises are presented
such that the student can evaluate typical switching characteris-
tics., Many of the specified parameters of the am2901, Am2907,
Am2909 and Am2918 can indeed be measured using the Am2900 Kit. It
is not possible to measure some of the parameters due to the complex
nature of the testing required.

USING THE EXERCISES

The microprogramming exercises are contained on the Am2900
Kit microprogramming worksheets following this discussion. These
worksheets show the specific "logic one" and "logic zero" codes
that must be entered into the microprogram memory in order to
execute the various microinstructions go as to perform a function
(HIGH = logic one). The results of the execution of these micro-

6-1

instructions is described in the accompanying text.

The Am2%00 Kit programming worksheet is divided into two main
parts. The top half of the worksheet shows a map of the entire
lé-word by 32-bit microprogram memory. The logic ones and logic
zeros associated with the fields of each microprogram memory word
can be entered into the worksheet. Any blank space on the worksheet
indicates a "don't care" condition. The bottom half of the worksheet
shows a functional block diagram representation of the Aam2900 Xit.
This block diagram is intended to allow the user to sketch the
path of a microinstruction so he may more easily understand the
actual event being executed. The use of these two sections of
the worksheet is demonstrated in the exercises.

PROGRAMMING THE MICROPROGRAM MEMORY

The recommended procedure for using the exercises as described
with the Am2900 Kit is to load all the required data into the micro-
program memory. For example, all six words of Exercise 1 should be
loaded into the microprogram memory before executing these instruc-
tions. The procedure to be used in loading the microprogram memory
is as follows:

1. Connect the 5V power supply to the Am2900 Kit and apply
power.

2. Set the RUN/LOAD SELECT switch (5§12} to the LOAD position.

3. BSet the MEMORY ADDRESS switches (S8-Sl11) to the decimal
zero position.

4. BSet the RAM & MUX SELECT switches (51-83) to the decimal
zero position.

5. BSet the MEMORY DATA switches (S4-57) to the required bit
position.

6. Depress the MEMORY LOAD switch (514) to enter the data.

7. View the MICROWORD MEMORY LED's to be sure the correct
word has been written into the picroprogram memory.

8. Repeat steps 3-7 for each decimal position of the RAM &
MUX SELECT switches until all eight fields (decimal 0-7)}
have been loaded.

9. Repeat steps 3-8 for each microprogram memory address
word until the entire 16 words (word 0-15) of the micro-
Program memory have been loaded.

Needless to say, any blank entries ("don't care" conditions)
may be omitted. When this procedure is followed, all possible
128 four-bit fields in the microprogram memory are easily loaded.

6-2

5

- wish to load all 16 words of each field sequentially.

The above description has sequentially loaded the 8 four-bit
fields of the microprogram word, one word at a time. The user may
That is, the
RAM & MUX SELECT switches are set to decimal 0 and each MEMORY ADDRESS
is loaded with the appropriate word for the entire 16 words of the
memory. Advanced Micro Devices' Applications Engineers have found
both techniques to be convenient depending on the particular exer-
cise. g

Once the microprogram memory has been loaded, the exercise
should be executed as described in the accompanying text with the
programming worksheet. .

'CONNECTENG THE PULSE GENERATOR

The Am2900 Evaluation and Learning Kit is designed such that
it can be easily driven from a pulse generator. Two turret termi-
nals are provided near resistor R9 so that a coaxial cable can be
soldered to the board. One of the turret terminals is marked "GND"
and connects directly to theground bus of the system. A 51 ohm
resistor is connected directly between the two turret terminals.
This provides a termination for the coaxial ecable at the U29 IC so
that the cable is properly matched.

The printed circuit board has been designed such that it will
accept a printed circuit type BNC connector. If the user desires,
he may purchase a King's KC-79-153 connector for installation
directly beneath the pulse generator turret terminals. This will
provide a second method for connecting the pulse generator to the
Am2900 Evaluation and Learning Kit, In some laboratory environments,
this may be more convenient than directly connecting a coaxial cable
to the printed circuit board.

Programming Exercise #1 - Loading the Am2901 Memory

Many of the operations performed with the Am2901 Microprocessor
will involve the use of the l6-word, two-address RAM. These 16 RAM
locations may be employed at the option of the user as program count-
ers, accumulators, index registers, scratch pad memory, stack pointers,
non-user registers, and so forth. Application of the RAM can be
determined by the system architecture as well as the microprograms.
The purpose of this exercise is to demonstrate one technique for
loading the 16 registers from the incoming data input. The exercise
is written so as to load a selected word in the RAM memory and then
advance to the next line of microprogram code. At this word, the
contents of the Am2901 RAM is read out so that it can be examined at
the output of the Am2901.

In this exercise, microprogram word zerc contains a micro-
instruction that will load Register "0" of the Am2901 with the value
binary two. The micreinstruction at word cone in the microprogram
memory reads the contents of register zero to the Am2901 output
via the B data ocutput of the 16 x 4 RAM. Microinstructions 2 and 3
perform the same function on RAM Register "1" while mic¢roinstructions
4 and 5 perform the same function on RAM Register "9". Obviously,
the user can locad and examine all 16 registers in the Am2901 RAM using
a similar pair of microinstructions. Incidentally, microinstructions
0 and 1 could be used to perform this function on all 16 registers
in the Am2901 by simply re-loading the contents of the microprogram
memory "D" and "B" fields and then executing these two instructions:;
then reloading and executing again.

The actual execution of this exercise is as described below.
Leave the RUN/LOAD switch in the LOAD position and set the MEMORY
ADDRESS switches to decimal 0. First, depress the SINGLE STEP CLOCK
momentary switch so as to enter the contents of the microprogram
memory into the pipeline register., MNext, advance the MEMORY ADDRESS
switches to the decimal 1 position and again depress the SINGLE STEP
CLOCK momentary switch. This has the effect of executing the con-
tents of the pipeline register which is currently word zero and
entering the contents of microprogram memory word 1 into the pipe-
line register. The result is that binary two is loaded into Register
0 and the pipeline register contains an instruction that is currently
reading the contents of Register 0 to the Am2901 outputs., The user
can view the Am2901 outputs on the DATA DISPLAY LED's by setting
the RAM & MUX SELECT switches to the decimal 1 position. When this
function is performed, the DATA DISPLAY reads binary two (0010},

The next pair of microinstructions which load Register 1 can
be executed in a similar fashion. That is, set the MEMORY ADDRESS
select switches to the decimal 2 position and depress the SINGLE STEP
CLOCK momentary switch., This loads the contents of microprogram
memory word 2 into the pipeline register. " Next, advance the MEMORY
ADDRESS switches to the decimal 3 position and again depress the
SINGLE STEP CLOCK momentary switch. This executes the contents of
the pipeline register and enters the "read" microinstruction into

6-4

the pipeline register. Thus, the user now views the word that has
been loaded into Register 1 of the Am2901 RaM, Microinstruction
words 4 and 5 are executed in a similar fashion.

The purpose of this exercise is to demonstrate the simple load-
ing of data into the Am2901 memory. The loading of the Q register
can be accomplished in exactly the same fashion with only the destina-
tion select field of the microinstruction control word being changed.
In this example, each "load” instruction has been followed by a
"read" instruction so the contents of the Am2901 memory can be
examined. 1In normal operation, only the load operation is performed
and the machine moves on to the next task at hand.

Am2300 KIT PROGHAMMING WORIK SHEET
EXERCISE RUMBER: __] nave: LOADING THE AM 2901 RAM

MICROPROGRAM MEMORY

Fam g ? "
“RAUX 6 5 4 3 2 1 0 MOTES

ERANCH o EXT
ADOALSS i A

AL MDY i .
novarss |0 r’"_"l""‘ Crin| F3 r71| r‘] fa

DATHA
CONTHOL

i | o] st 17| R
Azln‘n‘l\g EIIJ?I‘BT[D_]F;[D1 =7 CDN"”IUL | B .
0010 J‘[LoﬁD 7 : Programming Exercise $2 - Rotate Functions in the Am2901
| o :

oo A o el :
0 :
? |Beap Ko i The Am2900 Evaluation Kit is designed to provide four different
!
i
|

MUX
MUXgy

Dri |11 lot

! o001

2 ot 0100 "Los I shift matrix multiplexer control functions as shown on page 3-9 of

3 o1 Beap £, : : the operational description. These four functions are enter zeros,

a 011 olol Lo £q : rotate, _double lc::ngth rotate, and doul?le length arithmetic rotate.

; - OOI Perv £ . This shift function can be performed in either the shift-up mode

- EHD £ _ or shift-down mode. The purpose of this exercise is to demonstrate
the use of the single length rotate up and down, as well as the

; 43 double length rotate up and down.

|
i
|
I
|
|

o~ori
OO0

|
|
|
|
l

7 First, the microprogram memory should be loaded with the various
i data as shown in the accompanying worksheet. Microprogram word 0 '

: : is used to load a binary one in the second bit position of Register 0
" ‘ 1 in the Am2901 RAM. The microinstruction at word 1 performs a rotate
up function on this bit. Microprogram memory word 2 performs the
rotate down function; word 3 is the double length rotate up function
and word 4 is the double length rotate down function. Word 5 is shown
to demonstrate the "no op" function.

BLANIT BaNT Cane 1 Exercise 2 should be performed in the following manner. Keep
LoAD P ' ; the RUN/LOAD switch in the LOAD position. Set the MEMORY ADDRESS
INSTRUCTION ot - switches to the decimal 0 position and depress the SINGLE STEP CLOCK
. ; momentary switch. This will enter the contents of microprogram
0 | . memory word 0 into the pipeline register. MNext, advance the MEMORY
L - | 1 . ADDRESS switches to the decimal 1 positon. Depress the SINGLE STEP
AN AL rlul I./.:.'J.] ‘ " . CLOCK momentary switch. If the RAM & MUX SELECT switches are set

+

I STACK
| I BRANCH REG FOINTER

b—— [

T ADGRESS] | -
1,,5\35;9**5;.' FILE

|

f

|

! |
-l | —‘_'f__l
P e |
)

|

|

|

|

to the decimal 1 position, the output of the Am2901 Microprocessor

, will be viewed on the DATA DISPLAY LED's. The current contents

' k of the DATA DISPLAY should be binary two (0019). Now, if the MEMORY
; ADDRESS switches are left at the decimal 1 positon and the SINGLE

STEP CLOCK momentary switch is repeatedly depressed, the bit as

displayed on the DATA DISPLAY will be rotated in the upward position.

; That is, the bit will move in the 2, 4, 8, 1, 2, etc. pattern (0010,

¥ 0100, 1000, 0001, 0010, etc.). As many times as the SINGLE STEP

; CLOCK momentary switch is depressed, the single length rotate up

function will be executed.

o

; Next, set the MEMORY ADDRESS switches to the decimal 0 position
[————— £1 / and depress the SINGLE STEP CLOCK momentary switch. This will again
load the contents of microprogram memory word 0 into the pipeline
register. Then, set the MEMORY ADDRESS switches tothe decimal 2
position and depress the SINGLE STEP CLOCK momentary switch. This
will execute the load two microinstruction and enter microprogram
memory word 2 into the pipeline register. Now, with the RAM & MUX
SELECT switches in the decimal 2 position, the DATA DISPLAY LED's
will again show binary two {(0010). Keeping the MEMCRY ADDRESS
switches in the decimal 2 position, each depression of the SINGLE
STEP CLOCK momentary switch will result in the execution of a rotate
down microinstruction. The pattern on the DATA DISPLAY will follow
a2, 1, 8, 4, 2, etc. seqguence as the SINGLE STEP CLOCK momentary
switch is depressed.

|

L 4

PirLLESE
__ RLGILIER
e — |1

STATUS
REG

!

v
(4]
m
r
m
G
=
v

il -

r- 1
| i
I |
| l] l
! ‘ I
I |
i
I
i
f
!

CONDITION

CODE MUX

_——

= | DEST -*{. MUX
oo ¥ Am290%
_l

The double length rotate up and double length rotate down in-
structions are executed in a similar fashion. PFirst, execute the
word at deéecimal 0 position, then execute the word at the decimal 3
position and then execute the word at the decimal 4 or decimal 5
position. The word at the decimal 3 position simply performs a
clear Q function so that the contents of the Q register intially is
all zeros. The double length rotate up pattern will now be 2, 4, 8,
0,0, 0, 0, 1, 2, 4, 8, 0, etc. Likewide, the double length rotate
down pattern will be 2, 1, 0, 0, 0, 0, 8, 4, 2, 1, 0, etc.

The "no-operation" function at microprogram memory word 6, if
selected, simply demonstrates that the Am2901 can be clocked with no
write operation being performed. During any of the above exercises,
the MEMORY APDRESS switches can be changed to the decimal 6 position
and the SINGLE STEP CLOCK momemtary switch depressed. The result is
that the no-operation function will be entered into the pipeline
register and then executed. It should be remembered that when the
MEMORY ADDRESS switches are changed to the decimal 6 position, the
pipeline register will currently contain a rotate instruction. This
instruction will be executed as the contents of the microprogram
memory (no-operatjion) are loaded into the pipeline register. fThus,
one additional execution of the rotate function takes place before
the no operation instruction is executed.

The purpose of this exercise is to demonstrate how an external
multiplexer can be used to perform single length and double length
rotates in either direction. The user is encouraged to write instruc-
tions that perform shifting of zeros into the word and double length
arithmetic shifts. From this example, it should be apparent to
the user that a multiplexer scheme can be designed to include the
carry flip~-flop such that single length and double length rotate with
or without carry could be implemented. Likewise, shifting ones or
shifting zeros into the Am2901 would be possible.

&

6-8

EXERCISE NUMBER:

Am2800 IKIT PROGRAMMING WORK SHEET

2 wave:_ROTATE EXERCISES

MICROPROGRAM MEMORY

"L‘"‘M'F‘ I 5 1 A 0 HoTEs
I R e A o D I vl I T » st | e
:‘I.F)h:l\[‘st ”"3‘“”7'1“”'j""“ PJI P?l bl l o 2 i l 1"1 s i '?} '1| [" 'l..] ‘4} I3 "J]A?}M]nn llslfir] lhl tp USIUJJUJUO CONTRD ? contion
A I JodT LT jor1 — __[0ooolpoto ~orp By
I oLl oLt job) 0000| Rer_Ue
| loralfioil|oLlf "~ joooo| " TEEY
e {000 0lo [100 | _ R G
o o Lo gol okt 0000 DeL ot e
| - LoOo0oLE |01l [0000 Det. 5D
SCE I S /1 Y A X R IR X) Ve OF
7 i i
I . S I A R N D o
N B B S D R
" - e S] ;
A B — | - SR R e :
S e e e e e : |
2) o |) B I _u,
_J \ | - 1 :
IRSTRUCTION MG oTATE _o_w_g)
e 0
s I Tl
F éiNETfT?H REG] ;EEJ£$§H | +(Muxl [V{MUX
' ,I:,jj‘__w _._.__‘I.._._ I ' R
' UOResS] e |
U'wicagg]i e r-+——4+ - ——— - —
st i I Sl | ——T]
o T ey o]|
g PROW, —j i mux l PC | | LSHIET ! |
cmn e ! . ,_YU.“ P DN i | L '
et e T] : a |
-fmcméiga?nuﬁ !iINEJ I | > [AJ
L. Coed | e | ﬂuwf _______ y
I i !.i‘.JVEN 7 I A_]t -
|l . STATUS
SR 1| [e | ! REG
i L. . | I_
LZ ! e e e e
X CONDITION
J
- CODZI MUX
r 1\0 RAM J’._“_ e **“’“J
(A ENUSR S 2
| =M1 st
L o T _—

Programing Exercise #3 - Am290] Arithmetic Operation

The purpose of this exercise is to demonstrate a small set of
the arithmetic capability of the Am23%61 Microprocessor. Four diff-
erent instruction types are demonstrated on the worksheet for this
exercise. The first three types are demonstrated in microprogram
memory words 0, 1, and 2 while the fourth type is demonstrated using
three microinstructions at memory locations 7, 8, and 9. Again, all
data shown in the worksheet should be entered into the microprogram
memory.

This exercise is executed in the following manner. Set the RUN/
LOAD switch to the LOAD position and set the MEMORY ADDRESS switches
to the decimal 0 position. If the RAM § MUX SELECT switches are set
to the decimal 1 position, the output of the Am2901 Microprocessor
can be viewed on the DATA DISPLAY LED's. Each time the SINGLE STEP
CLOCK momentary switch is depressed, the current DATA DISPLAY will
be incremented by one.

This is accomplished by using the B and 0 source operands,
adding in the ALU with the carry-in set to a one, and writing the
results into the Register 0 of the RAM.

If the MEMORY ADDRESS switches are placed in the decimal 1
position, each time the SINGLE STEP CLOCK momentary switch is
deprssed, the contents of Register 0 will be decremented. Thus,
the DATA DISPLAY will show this decrement function on the contents
of Register 0.

If the MEMORY ADDRESS switches are placed at the decimal 2
position, each depression of the SINGLE STEP CLOCK momentary switch
will result in the contents of Register 0 being increased by three.
Needless to say, an overflow will occur every six clock cycles and
the contents of the register will "end around"” from a positive value
to a negative value. This microinstruction demonstrates adding a
data bus input value on the D inputs to the contents of a register.

Microinstruction words 7 and 8 perform the required set-up
to demongstrate a register-to-register add operation at microinstruc-
tion word 9. This sequence of microinstryctions is executed in the
following manner. Set the MEMORY ADDRESS switches to the decimal 7
position and depress the SINGLE STEP CLOCK momentary switch. Next, set
the MEMORY ADDRESS switches to the decimal 8 position and again
depress the SINGLE STEP CLOCK momentary switch. Now, set the MEMORY
ADDRESS switches to the decimal 9 position and again depress the SINGLE
STEP CLOCK momentary switch. Thus far in the procedure, we have exe-
cuted microinstruction 8 which sets register 1 to the value five. If
we leave the MEMORY ADDRESS switches in the decimal 9 position and
begin depressing the SINGLE STEP CLOCK momentary switch, the ‘contents
of Register 0 will be increased by the value five. This will be
equivalent to a sequence of 0, 5, 10, 15, 4, 9, 14, 3, 8, etc., in a

6-10

"magnitude only" number system. This output is viewed on the DATA
DISPLAY LED's when the RAM & MUX SELECT switches are in the decimal
1 position. This microinstruction represents a register-to-register
arithmetic addition within the Am2901 Microprocessor.

EXCRCISE NUMBER: 3

Am2800 KIT PROGRAMMING WORIK SHEET

e, AM 2901 ARITHMETIC OPERATIONS

MIGROPROGRAM MEMORY
LL‘,“‘J‘X‘& 7 ¢ s a z 1 0 NOTES
i AR N R b e
:\.111[‘3‘11;;2; k'”!;il}“;‘!‘mllill!x“\ E |2.l—||.[I;‘, ! 1_5 } |d-| Iz A3-i Az‘!f\q Ayl Bz ‘I U;J B.! fig DJI 02| [+ 7] i Y 'LDT.'TH-L:Z CONTROL
i ol11(1j000 0000 Fwe o
‘ _jott{oeool| 000 Dee Lo
. 011 110110000000000000011 Eo+3
3 i
4
5 -
o _ ;
A R B (o N Y AT X 100 0000 e p By |
’ pjonjrrtilf ot |loooliolod R =&
? ol 1100000001 0000 Reefit &
10
" T
12 _ i : -
13 - 7
—— _ _
' l |]
BLANK - LON'T CARE
INSTRUCTION AKFL < f?o +'ﬁ21
o
== — — P
- ST ﬂil_ﬁ__] JL&., b R o
[ERANCH REG STACK [MU%J .+[T_w MU ~i MUK
i!_1 ;:] lPJINTLn [{“____ - []
bob——q ! | j
|1 Sorees] |) T T
; <l E!*_F;]J I |’ i et B
Ao Do = ! e ——1 i]
! ’ r D R ¥ Pe 7 j oL \ 3 o- 3]
for n0m -1 P b P ||] | SHIET L_SHIFT |
ST AU || A 1 N e S e R
T Lomeos m}‘_:f_iw_] | R Rt o] {
et e LA i W e
fq‘3ﬂuhLL0FﬁOGﬁhM Howe |1 | > AN |
o Wreory I I | A B .
B | ﬂrolf M ' F
EilLLINE | ,H%Eh ifié;a_. | R
e i‘([f,Gl“'_l R - ; 3 | " SELECT L = STAT_EJS
<!]] I — S RES
! | 4 IS
VLT es™ D e
—pd | ALU | DL TIDA
o —— | r CODZ MUX [
TQJMM - | -
| L a2 |
|I » | DEST J_{r MUX I
. Y Am2901
|| — o ey T T _

&
j
S
5

4
q

Programming Exercise #4 - Continue and Branch Next Instructions
in the Am2909 Microprogram Sequencer

The next few exercises will examine various functions for the
¢ontrol of the next microinstruction address., Pield 6 of the micro-
program memory word contains a number of functions that are executed
by the next address control PROM associated with the Am2909 Micro-
program Sequencer. These functions are shown on page 3-5 of the
discussion on the operation of the Am2900 Kit. Exercises 1, 2, and
3 demonstrated a few of the functions of the Am2901 Microprocessor.
All of these microinstructions were executed with the RUN/LOAD switch
in the LOAD position. In order to execute the microinstructions
associated with the next address control of the Am2909 Microprogram
Sequencer, it will be necessary to switch the RUN/LOAD switch to
the RUN position. However, in order to load the microprogram memory,
the RUN/LOAD switch must be in the LOAD position. .

First, the data on the programming table of the exercise 4 work-
sheet should be loaded into the microprogram memory. This exercise
demonstrates the CONTINUE {or EXECUTE) operation as well as the
BRANCH (or JUMP} operation in next microinstruction select control.
After the microprogram memory has been loaded, the MEMORY ADDRESS
switches should be placed in the decimal 0 position and the SINGLE
STEP CLOCK momentary switch depressed one time. This will load the
contents of memory address zero into the pipeline register. This is
necessary to initialize the pipeline register so that the instruction
sequence in the Exercise 4 worksheet can be executed. If this step
is not performed, the current contents of the pipeline register are

"not known and the next microprogram memory address will most likely
not be as determined from the worksheet. Now, the RUN/LOAD switch
-should be changed to the RUN position. If the RAM & MUX SELECT
switches are placed in the decimal 0 position, the output of the
Am2909 Microprogram Sequencer can be viewed on the DATA DISPLAY LED's.
This display represents the address of the next microinstruction. At
this point in the execution of the exercise, the DATA DISPLAY should
show decimal nine (1001). As the SINGLE STEP CLOCK momentary switch
is depressed, the seguence on the DATA DISPLAY should be 9, 6, 10,
1i, 12, 13, 14, 15, 3, 0, 9, 6, etc. Microinstruction at address
0, 3, 6, 9, and 15 are BRANCH instructions while miecroinstructions
at addresses 10, 11, 12, 13, and l4 are CONTINUE instructions.

The purpose of this exercise, of course, is to demonstrate the
simple CONTINUE and BRANCH instructions used throughout microprogram
memory next address control.

Am2900 11T PROGRAMMING WORI(SHEET

Aup E%AMCM

XERCISE NUMBER: A*’ NAME: O.mu 7 AL E,
MICROPROGRAM MEMORY
_?.{',_E____ T L T | 2 ' o HOTES
SR I vl S e Y O O R N A T T e
o ({00 {lcoor Bt 9
) .
» {0000[000]] Be o
« 1010|000 1] B B BR 10
8 X T -
: 0110 [o0oT| B BR ¢
10 006]0] QanT
" m&— | e:O A i
1 olo| ConNt
n 6070 QT
" o0l 0O QaonT
s 001 | 000 ER3

CLANK = DOM'T CARE

wsTRUCTION SEQUENVCE 3 0,9, G, 10,1112, /3,/52 1530, £7C

o —————— —
e S ol R
|| BRARCH REG—] ! »| mux 4 MU
L
I_—.-.___i N T
EwE v i
{sviTCHES) — S SR
i I— o E ‘—i ’
ror POV D et tE 0 .fﬂWTmida |
b d T '
'Y , '
. f 1 |
a
Le | !l
1 i
[——— _
LIE [= e
REGISTER [!
oy DEGISTER | STATU3
. L :
'*—Ji]Tbﬁ i
i
. | . R
3 PSP
L1 ALU l CONDIiCi |,
[R
r 4 Q, RAM [*"_“:”“"t?*"l_ | e
| o T | l
gall DEST]—¢[MUX I
. | Y Am2901 |
T T T)

1
(44}

Programming Exercise #5 - Looping in Microprogram Memory

The purpose of this exercise is simply to demonstrate the
technique of looping within the microprogram memory. This particu-
lar demonstration does not make provision for braching ocut of the
loop in any fashion. While this is not the normal case, it does
provide the student with a view of what is involved in getting into
and executing a loop. The loop is normally terminated by using one
of two types of instructions. The first type of instruction would
be test-end-of-loop and either repeat the loop if the condition is
not true or continue out of the loop if the condition is true. '~ When
the "continue out of the loop" microinstruction is performed, a
POP is executed to keep the stack maintained properly. The second
technique for escaping a loop is to perform a conditional branch
microinstruction somewhere within one of the loop microinstructions
and when the test condition finally becomes true, a branch from
the loop is made. Again, once out of the loop the first micro-
instruction should be a POP to perform the file maintenance.

Once the data on the worksheet associated with Exercise 5 has
been locaded in the microprogram memory, the MEMORY ADDRESS select
switches should be placed at decimal 0 and the SINGLE STEP CLOCK
momentary switch depressed. Now, the RUN/LOAD select switch should
be changed to the RUN position. If the RAM & MUX SELECT switches
are placed in the decimal 0 position, the DATA DISPLAY LED's will
view the Am2909 Microprogram Sequencer next address output. At this
point, the DATA DISPLAY will show decimal 1. As the SINGLE STEP CLOCK
momentary switch is depressed, the DATA DISPLAY LED's sequence will
follow the pattern of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 12, 3, 4,
5, ete. Thus, the microinstruction 3 and proceeding through micro—-
instruction 12, at which point a loop back to microinstruction 3 is
performed. This loop is made possible by using the file reference
next address microinstruction. A PUSH was performed at microword 2
so that the word currently on the stack is address 3. Thus, each
time the file reference instruction is executed at microword 12,
the next address from the Am290% Microprogram Sequencer is micro-
instruction address 3.

Am2900 KIT PROGRAMMING WORK SHEET
EXERCISE NUMBER: =3 navc: LOOPING [N MICRO PROGRAM MEMORY

MICROPROGRAM MEMORY

na‘:* 1 & 5 4 3 2 1 0 MOTES
IR e) Y R O T I T
neslrdndendin s o[| 5] 2 [T | 2|5 o] T T] e i o] o] vt ¢ o
° 10010 | conr Programming Exercise #6 - Executing a Subroutine in
' o010 Cod T | Microprogram Control
?
s (l)go'* - 2“5‘4 ! The purpose of this exercise is to demonstrate the technique of
10 1 oMT subroutining in microprogram memory. Microinstruction 3 executes
i 0010 _ covT | a jump-to-subroutine at microinstruction 12. The subroutine at
: 0010|_ aenT | microinstruction 12 is three microinstructions in length covering
5. 0010 CoWT | the microprogram memory space between microinstruction 12 and micro-
7 0010) - Qe T | instruction 14. The basic microinstruction sequence between micro-
. ; - 1 word 0 and microword 6 is simply a continue sequence between 0 and 3
0010 | dov T , as well as from 4 to 6. At microword 6, a branch to word 0 is per=
i 0010 | ConNT | formed.
ha 0 O ' 0 OpwT
" OO0 AANT | This exercise is executed by first loading the microprogram
" N Fie E“FE memory with the data on the worksheet. Once the microprogram memory-
= ' LE PE : has been loaded, the MEMORY ADDRESS select switches should be rlaced
f in the decimal 0 position and the SINGLE STEP CLOCK momentary switch
" i should be depressed, Now, the RUN/LOAD select switch should be
- | ! | placed to the RUN position and the RAM & MUX SELECT switches placed
BLANK > DON'T CARE . to the decimal 0 pOSitiOl’l. This alllows the DATA DISPLAY LED's to
view the output of the Am2909 Microprogram Sequencer, The current
INSTRUCTION _SEQUENCES O,/,2,24 $.6,72, 89 1o, 11,12, 3/4{& T display should be decimal value 1. As the SINGLE STEP CLOCK momen-
7 d - ? tary switch is deprssed, the DATA DISPLAY should execute the sequence
o , —| i, 2, 3, 12, 13, 14, 4, 5, 6, 0, 1, 2, 3, 12, etc.
N ! 1
T T o — B e
N FLA !
| saci] | =]
, BRANCH REG PBINTER | 3 MUXJ
L__“il i |
ADDRESS
SWITCHES| | . FILE fl - —— — e =
R ;
E=nl N P | =il
|| o R FPC | 3
Ag< | PROM MUX PC | LS
| Y | I . : f
o - - i
[Am2909 I J
R 141 | i
1234TMICRG FROGRAM] | | me | 1 —m—— |
MEMORY | | | A |
‘l't L= 4 | k‘—'}' - - fEn
PIPELINE [“"gﬁt}(“' B d’"é” | e ey
REGISTER !)
- " ELE L N STATUS |
— [—— i L]‘ ” REG ;
- _ _ |i I \L_._.__.‘lr’.._..,m || 1 e
: R s [connirion
_j A ALU f CO‘,‘:“"S)j,‘I l.ﬁ
I_. _____ E COLZ WitX i |
J“Q, RAM R Skl T |
L | . Y v o ' ‘!, 1
. MUX
I LG l% Y Amz901 |
L T r _______ ;

Am2900 KIT PROGRAMMING WORK SHEET

EXERCISE NUMBER: O NaMe: JUMP TO ONE SUBROUTINE
MICROFPROGRAM MEMORY
'T;}js i) G o 4 3 2 1 L] NOTES
N [T e o) I L I T B e
E.E;z;s ;!nJL“l_j:u;lVl]Ulrh\ -PJ- P;]Irw ;nﬁ 2 xa_l -\.7]: H :]T] Tu_ Ca ,;—J].,]:J ﬂi{l},”},{a u3 ;, ,,I o ;J];?];' ; Lo CaNTROL
° 0010 B 1) dovt
I 0010 _ 0oN T
: 0010 ;. | QN T
P pileoioiol). _ | JSE 12
‘ oot . | e - Quur
A N~ N o) I N ConwT | |
_coQo0eoot| | || | T] E@_D i
1 I
|
- 1 _ d_ 1 | _]
9 - - - T - - H
_ -] — o __]
1 i
1t o) T 1
" leolo| | . | couT |
R St X I | . I R eonT
LI S - B) S O A N A R RTS |
15 |
BLANA DON'T CARE I
INSTRUCTION
o |
r—— = = —— - | - !
| ¥ 4] ‘J_'_{_'-]__‘If— b b ! !
{ | BRANCH REG et | ¢|7MUX ‘ . cfmux] MUX] II r MU}(] Jf
L 1 |
a ' i Lr—
FACORESS] | FiLe 1] — —
[SWITCHES] | , | Fr—t—_——t——— —
R ;
il P R e —— ||
D R FPC = 0
Agpt |PROM ; MUX PC { ; SFEFT _;gﬂ%E:}J {
Y o 3 |
| Am2809 roll | A
A % — 1 ¢ | A Rgﬁ ° f
1234TMIcRO PROGRAM { | e || L44ﬁ¢ |
MEMORY | | | AR |
AT L T[] (===~ s
PIPELINE | T—%@“ﬁw&—é— | ‘ -
REGISTER o
L . . L STATUS
== checg > AT I
- | | | -
= =l e
: CONDITION |,
e ! AtV l cooe;wux_J'7
Q, RAM b I e
| & | |
—g44~—+—%| DEST |-t MUX I |
—_ Y | Am2001
L T ______ |

Programming Exercise #7 - Nesting Subroutines

This exercise demonstrates the technique of neating subroutines
in microprogram memory. The subroutines are nested four levels deep
in this example. The main microprogram resides at microinstructions
13, 14, and 15. The microinstruction at word 14 is a jump-to-sub-
routine at address 0. This is shown on the flow diagram below. Once
at subroutine 0, we see the first insfruction is a jump~to-subroutine
at microinstruction 12, The subroutine at microinstruction 12 is a
single microinstruction subroutine resulting in a return-from-sub-
routine. The microinstruction at address 1 is another jump-to-sub-
routine at microprogram address 6. The subroutine beginning at micro-
program address 6 again executes a jump-to-subroutine at address 12.
Again, the single microinstruction subroutine is executed and the
microprogram control returns to address 7 where another jump-to-
subroutine is found. Here, the jump-to-subroutine takes the next
microinstruction from word 3, The microinstruction at word 3 again
executes a jump-to-subroutine at word 12. The single microinstruction
subroutine at location 12 is now executed and the microprogram control
returns to address 4. The microprogram instruction at word 4 is
another jump-to-subroutine at microprogram memory word 9. Micropro-
gram memory word 9 is a continue instruction and microprogram memory
word 10 is a return-from-subroutine instruction. The flow is such
that subroutine 9 returns to subroutine 3 which returns to subroutine
6 which returns to subroutine 0 which returns to the main program.

From this example, several observations can be made about sub-
routining in microprogram control. First, we have nested subroutines
up to four levels deep using the Am2909 stack. Second, the stack has
maintained the correct return linkage throughout the various sub-
routine calls and returns. Third, the subroutine at microinstruction
12 has been used at more than one level of subroutining, -

The purpose of this exercise has been to demonstrate nesting of
four levels of subroutining. Note that each level of subroutining
required one return address location in the PUSH/POP stack. Recall-
ing the discussion on looping in Exercise 5, a PUSH onto the stack
was performed to supply the reference address for the loop. Thus,
it should be understood that up to four levels of loops and sub-
routines can be intermixed in any fashion. One word of the
stack is used for each reference address required. For example,

& subroutine might contain a loop which contains another subroutine
which contains another loop. This would utilize the four levels of
stack depth within the Am2909 Microprogram Sequencer.

Amz220 KIT PROGRAMMING WORIC SHEET

EXERGISE NUMBER: 7 NAME: /UESTMJG éuBEOuTWEs
MICROPROGRAM MEMORY
B ! G 5] E 2 1 [NOTES
TR | eliibion | BR[| AT | » v o Ner | g
HEMORY VI P N [P [i_r 2 g i1 _ S I ,— " i f 1 vﬁ Azl g Ay I\u’ Bz | B2| 8y)Bg|o3]|0z| 01| Dp At[!}h?T"OL CONTROL
i ‘;"—319"%0":[“”0 ’3] “2.! fire sl zl 1 o 5|14 l 3 Jl 2 l |, | H o c
e |lloaglotl] JdsB 12
Cjotlo| Ot NEEA
2 &) ol RTS
s |1t ool JSB 12
s Jlool |6 Js B9
s Olo} RTs
s [loo ot JSB 12
T oot [0 _ JeB 3
8 0ol] RT%
9 000 ’ % o T
| 010] TS %
1 |
' CI1o]) £1s
2 oo lo Con T
Y YIEYINR Jsg o
v |1 O {0000 BE 13
INSTRUCTION _ » ~J S & 12
0 ‘
|
T — :i = — —
| v — | A S,
,i BRANCH REG EEEQ%EH | ﬁ[mux ‘ > Mux|
ettt v |
L ADGRESST .
Trel | Fie ||
L:L‘ﬂ_cl SJ | | —————1——‘_—1
L e Iminl
'@rfraomrﬂ UK PC || ‘_EQQITJ |
il Y =, 4
l_rf-\h/.u_.., T }F Q _‘l! ;
W T e
A1‘°4!chh0lluOGiUMﬂ Fowe || T |
__Miory | | '
¢_a“ o d | Fm——————
RN | - | ——
| “E‘-J‘}j e[SELECT |45 sTATLS J
| —
| \I_ ;_’_‘m | : ___' -.‘__m;
| CONDITION .
r————— ! gAY | CODE LUX
| T(lnnm S | I‘““’
. A o
{+{| DEST J-+I o] {
Y Am2o01
R | ______ _

MAIN

MICROPROGRAM

1}

-

3 LéngINUE 7

14 [JSB-0
[I5 | BRANCE-13
~ | (sYNC)
SUBROUTINE-0
o [3sE-12 |
[|j§B-6 |
[T
, SUBROUTINE-0
EENEERD |
[|J§B-9 i
5 |R¥s |

L

Actual Address flow is:

13, 14, 0, 12, 1,

6,

1z,

7,

3,

12,

SUBROUTINE~12

l 12 IRTS

SUBROUTINE-6

l GJLJSB-IZ

7 IJEB-3

8] RTS

|

SUBROUTINE-9

I 91'CONTINUE |

Lﬁloergs

|

g, 10, 5,

8,

2,

15,

13, etc.

Programming Exercise #8 - Combining the Am2901 and Am2909
te Perform Conditional Branching

This is the first exercise that combines both the Am2901 and
Am2909 functions. It is used to demonstrate the technigque of condi-
tional branching in microprogram control. The microinstruction at
word 1 contains a test on the carry flag whereby a conditional branch
occurs if the carry output is logic 1.

This exercise should be executed in the following manner. After
the data on the worksheet has been loaded into the microprogram memory,
the MEMORY ADDRESS select switches should be placed at decimal 0 and
the SINGLE STEP CLOCK momentary switch depressed. Now, the RUN/LOAD
select switch should be placed in the RUN position. If the RAM & MUX
select switches are placed in the decimal 0 position, the Am2909 Micro-
program Sequencer next microinstruction address ocutput is viewed. The

- DATA DISPLAY LED's will currently contain decimal value 1. As the
SINGLE STEP CLOCK momentary switch is depressed, the data display
pattern will follow a 1, 2, 0, 1, 2, 0 pattern until the carry output

is a "logic 1". At this point, the next address will branch from micro-

program memcry word 1 to microprogram memory word 15 and then to
microprogram memory word 0. This 1, 2, 0 loop will be repeated 15
times until the next carry flag occurs on the 16th interation and a
branch to microword 15 again cccurs.

The way this exercise operates is to take the contents of register
0 and increment the current value on microword 0. The instruction at

microword 1 is used to test the carry flag stored in the status register.

If the carry flag is logie 1, a branch to microword 15 is performed.
At microword 15, a continue instruction is executed which results in
an end around microword 0.

While this exercise is contained in the static testing mode
description, it can also be used in the dynamic testing mode. Micro-
instruction 15 will occur once every 48 clock cycles. Because the
design of the Am2900 Kit uses the Am2909 Sequencer with the carry
input tied HIGH, each time address 15 occurs at the Am2909 outputs, .
the Am2909 carry output will be HIGH. It is this Am2909 carry out-
put that is connected directly to the SYNC TEST turret terminal on the
kit printed circuit board. Thus, in this example, the SYNC TEST turret
terminal provides a convenient point to synchronize the oscilloscope
to see the entire 48 word microprogram sequence. Likewise, the
ADDRESS SYNC turret terminal can be used to view particular micro-
instruction address execution on an oscilloscope. That is, by setting
the MEMORY ADDRESS select switches to a particular decimal value, a
HIGH output on the ADDRESS SYNC turret terminal results each time the
Am2909 Microprogram Sequencer address matches that of the MEMORY
ADDRESS select switches. This allows one trace of a multiple trace
oscilloscope to be connected to the ADDRESS SYNC turret terminal and
the execution of a particular address studied.This will be discussed
in more detail in the dynamic operational 'description of the program-
ming exercises.

Am2900 KIT PROGRAMMING WORK SHEET
wame: INCREMENT ANOD TEST Ro

ExERCISE NUMBER: 8

MICROPROGRAM MEMORY

! 4 9 4 3 2 1 1] UOTES

T s . m . .

o suer | ALY A NEXT DATA

! e B ey A BT G A== 7= - 9 i Bt el ANOREST + COMTROL
n] o] g I 1; [(= |3] I I a 15] 1|13 | Az I\?] A|]Au U3] n,] _m-l Fry Ll;] ll;’U\ [Uo LONTIROL .

T rrancs
AP RS
! :

1m%

A
WIS 4 Ty
C o

-
I"":ilm}l‘”n rgl LR

e 001D |01 L] 0t }1l000 0000 CowT TWC Eo
__'_J’LJ J,LL,‘ B DQ_I__) _ tony Fe iBeis Cnr\:/
: loooQio00f|..c01] || | Be O |Up oF

00i0| (00o{ QouT | No 0P

e
BLARL ~ DON'T CARE
INSTRUCTION
o 1
Ir-, — ' - _—1L _._—7| ,J!_y_‘If_ Rk RV r‘f:.'wl'
|! BARCH REG pﬁﬂﬁ%gn | qlmux ¢Imu:] ¢Imux] olmux]
L SRR -
\ T
Bttt 1 Hl |
y MoDRESS] | e || f
(SWITCHES) | _“;_ﬂ r— 4t —— ikl Bl el
e , | I M
- _— YW - RAM |
1o T RTETRC | | %7 swier]"3 O sy {2 |
Lo PROM Ml PC || L = |
! i | Y] | I N | Y I
Lo o0e [16 x4 Q
Aossiate Suluion B 1.1 " waw '
234 Gacaairosram| | 1 e |1 > |
emeore I T Las | &
b | o1, |7 "3
[_) PielIRE] | “'%'X“’B : gn_'uf._ I . —
RLEISIER » B | STATUS l
) - ire | SELECT LY fak
e e [y v
I e S S | .
. CONDITION
ﬁﬁﬁﬁﬁﬁ ! gAY | CODE MUK
™ J(lRAM L | -
! A _a | 3 | |
[y) MuX
I ﬂL_E?E_mJ%L___[m_mI Am2901
. - Ty _J
K
|z
6-23

Am2900 KIT PROGRAMMING WORK SHEET

EXERCISE NUMBER: 9 nave: EXAMPLE OF B" ACCESS TIME

MICROPROGRAM MEMORY

FIan & H I3 5 a4 3 z 1 0 NOTES
TRUX

BRANCH

-]
SOVRCE ~ . . NEXT I
ADIHESS v i DATA

T TR i\] (;;
CINSEHUCTION A ‘
ONTROL |l = _SeLeer e _ ADORESS | o
IaraoRs] 2 anTROL |
J\gi‘\;r?é‘s‘q nnjin;wsin}um rylry r.—l Fop & I;I 1 K |q | e 5[1g | 13 ng—lAJi\[U:| Dzi] | og| Ca }
s i
 ADDREEY !

o | __legiol et (1t loll 0000 QouT‘;HE'a:D
L jrlloleoot ot il oLy LI f|ge tv £15 157

—— g1 -

AD

=]

Programming Exercise #9 - Measuring the B Address Access Time

—~o[=

|5 |
A

The purpose of this exercise is to demonstrate the technique used
to measure the access time of the Am2901 RAM with respect to the B
address. First, microprogram memory word 0, 1, 14, and 15 should be
loaded as shown on the worksheet. Now, the 'CLOCK SELECT switch should
be in the SINGLE STEP position and the RUN/LOAD select switch should
be in the LOAD position. The MEMORY ADDRESS select switches should
be in the decimal 0 position and the SINGLE STEP CLOCK momentary
switch depressed. This initializes the pipeline register to a start-
ing address. Next, change the RUN/LOAD select switch to the RUN posi-
tion. Now, depress the SINGLE STEP CLOCK momemtary switch two times
SO as to execute the microinstructions at word 0 and word 1. Thig
performs the loading of register 0 with all zeros and register 15
with all ones.

Now, if a pulse generator has been connected to the PULSE GENERA-
TOR inputs, when the CLOCK SELECT switch is changed to the PULSE GEN-
ERATOR position, the Am2900 Evaluation Kit will be coperating in the
dynamic mode. The SYNC TEST turret terminal can be used as a con-
venient oscilloscope sync point. The microprogram control will now
be executing the microinstructions at word 14 and word 15.

" looio| o
s (111 Qlooot] (o

BLANK : DON'T CARE
INSTRUCTION ‘B Asccss [\[q , {§>

o R |

1l 0t Ot 0000 Lol T |READ R,
L1l olidl Ol PLE B8R)Y IREAD R, <]

The two microinstructions at word 14 and word 15 cause the B
address to be changed from all zeros to all ones and then back to
all zeros. The Am2901 RAM data output for these two registers is
also all zeros and all ones. Thus, if the Am2901 Y outputs are probed
with an oscilloscope and the Am2901 B inputs are also examined with
an oscilloscope, the differential time between the B address change
and the Y data ocutput is measured - the B access time. The path
selected in this example is to use the ALU "OR" function with the B
and O source operands., In this example, the RAM is being re-written
on each microinstruction: however, the no operation destination con-
trol instruction can also be used.

POINTER

-
| | BRANCH REG STACK {
L——q ¥ |
|
|
|
|
|
|
!
I
-

ADDRESS] | EILE
SWITCHES] |

= \I 4
F

[o & Fec])
+/PROM MUX PC
| M
I e

Au34rmcnqvﬁoanM

From this example, the user should recognize that the B address
fields and the data fields could be selected in any fashion so that
various patterns can be examined. Likewise, the entire Am2901 RAM
might be initialized to all ones, all zeros, or a checkerboard pattern
if the user desires. It should also be recognized that similar tech-
niques can be used to measure various propagation delays such as the
D inputs to the Y ocutputs, the A address inputs to the Y address out-
puts, carry-in to carry-out and so forth. In fact, almost all of the
combinatorial propagation delays shown in Table IT of the Am2901 data
sheet can be measured in this manner. The key item to be remembered
in performing any of these measurements is that only the variable to
be measured changes between microcycles. That is, all other inputs
to the Am2901 should be held constant except for the path being mea-
sured. For example, when measuring the carry input to carry output
propagation delay, only the carry input should be changed during the
microinstruction time of interest.

MEMORY

-
I
f LA
¢ - |]..O“J' " £
PIPELINE | |

REGISTER D A B OQ o STATUS
! I D — REG
N

|
|
| | '
L= | e L.._L_.._ | e
L) ALUS i l CONQFUO&f1h
I___._——--—— '- P | _—COD:MUX f
!
|

I

LIPS]

Programming Exercise #10 - Counting the Total Number of Ones
in Three Register Words

This exercise demonstrates the use of the conditional jump-to-
subroutine function and uses most of the paths in the Am2900 Evalua-
tion and Learning Kit. V0, V1, and V2 are three data values that are
written into the data field of microprogram memory words 0, 1, and 2.
The user should make up these three values as desired. The micropro-
gram sequence from microword 8 through microword 15 executes a series
of microinstructions that will determine the total number of ones in
the three data fields, V0, V1, and V2. These data values are loaded
into Register 0, Register 1, and Register 2 of the Am29%01 RAM. This
microprogram uses Register 3 to hold the running partial summation as
the number of ones in each word are counted. Register 4 in the Am2901
RAM is used as a working register to count the number of cycles in the
algorithm. The contents of Register 0, Register 1, and Register 2
are not retained in the Am2901 memory; but they are destroyed during
the execution of the algorithm. The flow diagram shown below is a
summary of the algorithm as executed. The data value applied on the
D input during the AND operation with each Register 0, 1, and 2 is
used as a mask word.

As shown in the programming worksheet, if the program is exe-
cuted it will finally reach memory word 15 and branch on itself
thereafter. Memory word 15 is used to read register 3 such that
the DATA DISPLAY can be used to read the total sum of ones in the
Vo, V1, and V2 data fields. If field 6 of microprogram memory word
15 is changed from decimal 1 to decimal 2, instead of branching on
itself at microprogram memory word 15, the microprogram will now
continue from address 15 to address 0 and repeat the sequence. This
allows the total sequence to be executed in the dynamic mode such that
all the various instructions can be viewed using an oscilloscope. If
the values V0, V1, and V2 are to be changed, the kit should be switch-
ed from the dynamic mode to the static mode and these three data
fields reloaded with the new values., Then, the kit can be switched
back to the dynamic mode and the new sequence evaluated using an
oscilloscope.

The oscilloscope can be synchronized to the total microprogram
sequence by using the SYNC TEST turret terminal as a master sync
point. This SYNC TEST point will provide one pulse each time the
total sequence is executed. The ADDRESS SYNC turret terminal can
be used as one trace on the oscilloscope to gain an instruction
execution reference. For example, if the MEMORY ADDRESS switches
are placed in the decimal 14 position, a sync pulse will be generated
each time the algorithm jumps to the subroutine at microword 14 to
increment Register 3. Likewise, if the MEMORY ADDRESS select switches
are placed in the decimal 11 position, the end point of the four major
cycles (decrement, register 4) can be referenced at the ADDRESS SYNC
turret terminal,

L
6 | Load Ry=Vp
i Loabd £|=U' T
2 [Load By=vy 1 {Rrs; TweRs |
3 |Lonp Ry=Y
o | LLEAR ﬁ3=o
y
S |Ry*D§ D=ooet
PN
ﬂﬂv;
6 | R, & By
JSBIY

~$8 1Y

¥k

Vo OP

Pend Ry (stw)

——— e e . e S |

" —— o — — —

- o e - oy -

Test the total number of 1's in Rg, R] and R

Use R3 to hold the number of 1

cycle counter.

2.
's and Ry as a

Rps, R1 and Rp are not retained.

EXEACISE Numper: _{ O

Am2900 KIT PROGRAMMING WORK SHEET

b, Y 4V,

/
naveMumBep O ODus'< 1N

MICROPROGRAM MEMORY

‘Register 0 represents the leagt significant four bits.

rﬁ}!& ’ & 5 4 3] 1 0 NOTES
= R P) Y O Y I o T v e S e
) 0 B 0 Y 0o) Bl M
° ootot ot il o 0000 Vo |cswr [low
: ooie| ot 11l |loit 000! Vi Joswr (LD y
? : 0010| o1t |t Lt o1 10010| Va |cowr LD V2
i jooio| |lott| iti1t]| o1t 01000100 cont 18y=¢
‘ golo| o1t ottt |1oo oot | Coutr |Pz= o
i 0010| |00} [101]| |100|0000]0000|000 | [con 1P, misc
* Hito|oloo! 1ol [ott] o1 0000 ¥ T/o PosRory
_’ 0010| \001| |101] [100|00010001|000] |couT R, Mmask]
s 11100100 (1ot lott] |oid 0ool NSBN Ffo fre-B/a.
"1 o010/ 00| 101| [100/0010/0010(000 i{wur R, nik]
" HILOloI00) 1ol |Dti| |osd 0010 38314 o Ba%Pfaty
” OO0l Q| o1l |01l 0001 Dloo ConT DEe £y
" 0101|0000 |00} | | BeS /v po op
il L0000t 00} Be 1& |we af
Ll lotiel_lotl| joll|tlooo 0011 Prs Tne Ry
L it ilooo)| ool o1i1] o1t ooll F@ 1S Pead Py

LLANK - DON'T CARE

Ao mPROM.

INSTRUCTION ;{SB 4 TF _Ffo (# é% ’°> raauT(‘qz?}:

o

- p— j ’:_—1

[r l S

SR AN : STACK
l | ERANCH REG | POINTER
L 1 b

l
|
, |
, ABDRCSS| | -
{switcres! |] FILE } S e -] -
T —— '2
- I~ Y e N _..\l_“ - {.‘ | ' 0 RAM 3 OL Q e I
: ("o F o . I SHIFT SHIFT |
t_r.) N , : | v i ¥ v }
[~m2308 —-3 h l 16 x4 Q
— “‘ ‘,.._.._. "~ i] , _—ﬁ A RAM |
1234 wickorocram] | | we | — B | i
[MLMORY | | | A B .
I W.L‘ | L r:—__ - l —_—_— ‘ﬁ'O {_ ______ F3
[mﬁi} r?{ INE | _g- Y B‘Eg;]"é“‘ | l
- ﬁﬁqblfn | RSELECT ——p| STATUS
‘___ﬁ S i
| [ILE i et
N R 8 CONDITION
e —— + : At , CODE MUX
1(LRAM |
| |
|

PROGRAMMING EXERCISE #11 - 16-BIT PROGCRAMMED COUNTER

This .exercise demonstrates a technique for using four internal
am2901 RAM registers to emulate a 16-bit counter. 1In this example,
Then,
Register 1 is used for the second four-bit field; Register 2
is used for the third four-bit field and Register 3 is used for the
most significant four-bit field. The microprogramming sequence
as demonstrated in this example could be used as a subroutine that
is called each time an event occurs. A conditional Return-from-
Subroutine could be used rather than conditional branch to word 7.

When the program reaches memory Ygrd 15, all four internal
registers are at 0. At this point, 2 calls of this subroutine
would be required before microprogram state 15 will again be reached.
The exercise is intended £o be used in the dynamic mode; however,
the user may wish to preload Register 0 through Register 3 with
binary 15 (1111} so that the total branch path can be demonstrated
in the static mode.

The flow diagram shown on the following page is a summary
of the operation of this algorithm as programmed on the worksheet,
By this point, the user should understand the technique reguired
to initialize the sequence uging the Am2900 Evaluation and Learning
Kit.

Am29200 KIT PROGRAMMING WORIK SHEET

. exercise NumpeR: 1 ! wnes (6= BT CsunTER

MICROPROGRAM MEMORY

___SE';“_: B 5 5 a 3 z 1 o NOTES
RAANCH NEX1 DEST. SQURCE . . o
< AprAgss | “"‘{E{}"‘Eﬂ'i 21 seeer | gl sélect e L Ly i o > gﬂe’" BATA
e 3 5 n ADDRESS CONTROL
;1;::155 ;R_:,Fn;!;[anoarq AIER I |7] G| ® |1| ||| to 15_I|4—[|3 A3|A2!A1|An 63[81|F1|nu nglnz|n|lnu CONTROL °
’ o
? Ro :Eo */]
b
- — 1
PN .
P Ves :
~ IF Fdo —
o : gdoilo| lort| (ot |llooos Q00 0 ConT Bzl
s Q1] |00o0 oo/ Ber R
71 B= B+l ’ 6oio| 1011 | |Of)]1|000 Q00| Cowr P P4
. v QL] |ogo0 Qo |/ Zel1f{p
" o lo| ot o/1 14000 olo CoNT |[Pp:frtl
A 2 |01)] |vooo! ool 37 FHp '
< ves IF r#o " colte| 1011 011 (!0og 0o/ |/ Cow7_|By st
" Ol |vo0o oa/ BETF7 0
s | O] |oae/ 0o/ ‘ BE
Mo BLANK = DON'T CARE 7
N Ro= £y +1 INSTRUCTION £o = Pot s
o
|
T
< IF F#o | 6 % | JIV $7V§— ;5?{ "L‘Jf
| | BRANCH REG o RS ER | +l MUX | mux o MUX] | MUK
I____i 4’ |
ADDRESS |
FILE
T YN swITCHES| | l F———— —— ———] aadien)
3 3t I ——— 4 | r— 5
{_ 1!:': R FPC . | I 0|— ol S 0 o 3 %
Aogs|PROM|o] Mo pe | SHIFT SHIFT
| Y * | } —, | :
P b | Am2909 p |
oo IF Ffo A1234 __mﬂ | | A E"ﬁ . |
\ wMicRe PROGRAM] | | [ne || B |
MEMORY I | | A B '
=t L — Jrel M — Jes
E PIPELINE AN R B SN
15 [M0 or (spuc) REGISTER ! 1,0 Aedkc? © ! STATUS |
‘———4 1 I — L R S H REG]
B e] e
! : RALUS | [conoimion |,
[_________J y F CODE MUX l
t Q, RAM i
| 3 : |
f={! DEST |- M Am2901 | |
Exercise # I —— s S

Summary of Exercises

The exercises presented in Section VI of the Am2900 Evaluation
and Learning Kit Instruction Manual have presented a number of diff-
erent ideas associated with microprogramming. The user might attempt
a number of other exercises to gain additional experience with this
kit., Some ideas for these exercises are presented below.

1. Multiplication by a constant integer.

2; Division by a constant integer.

3. Counting the number of zeros in two register wordg.

4. Find the highest numeric value among four words.

5. Order three or four words in descending numerical order.
6. Perform a byte swap on one word. ‘

7. Perform a logic compare on two words and count the number
of bits not matching.

8. Add two registers and test for an arithmetic overflow

There are many such examples of small microprogram sequences of
instructions that can be generated using this kit. Remember, however,
the goal of this kit is to allow the engineer not familiar with micro-
programming to grasp the concepts involved in microprogramming and not -
necessarily be able to use the kit to perform all possible combinations
of microprogram sequences for instructions that can be suggested. Also,
the Am2901, Am2907, and Am2909 dynamic performance can be evaluated.

